$\mathcal{K} = \det \mathcal{W}$ , Gaussian curvature

We saw that the determinant of the Weingarten map depends only on the first fundamental form

 $\mathcal{K} = \det \mathcal{W}$ , Gaussian curvature

•

This is called the Gaussian curvature

 $\mathcal{K} = \det \mathcal{W}$ , Gaussian curvature

•

This makes sense because the determinant does not depend on the basis

•

Similarly, we can define the mean curvature as the trace of the Weingarten map

·

The trace also does not depend on the basis chosen

 $\mathcal{W}$  is symmetric.

•

Recall, from linear algebra that symmetric matrices are diagonalizable

 $\mathcal{W}$  is symmetric.

•

and the eigenvalues make up the diagonal

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ .

We will see that these eigenvalues have a special meaning for surfaces

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ 

Even their eigenvectors have a special significance

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

If the eigenvalues are distinct, then the eigenvectors are orthogonal

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

It is with respect to this orthonormal basis, that the map is diagonal

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1 \cdot \mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

Since the determinant remains unchanged by a change of basis

 $\mathcal{W} \text{ is symmetric.}$ Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\kappa_1 \kappa_2 = \text{Gaussian curvature}$ 

We can write the Gaussian curvature in terms of the eigenvalues

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

And similarly for the mean curvature

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1 \mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2 \mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1 \cdot \mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

Let us try and understand the geometric significance of the eigenvalue s

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

As usual we begin with the study of a curve on a surface

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that

 $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and

 $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ 

Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1 \cdot \mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

and try and understand the normal curvature

 $\kappa_n$ 

$$\kappa_n = \mathcal{W}\dot{\gamma}.\dot{\gamma}$$

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

which we now know can be written using  $\mathcal{W}$ 

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\kappa_n = \mathcal{W} \dot{\gamma} . \dot{\gamma}$$
  
=  $(\mathcal{W}(c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)$ 

But now we have a new basis,  $\mathbf{t}_1$  and  $\mathbf{t}_2$  convenient for the Weingarten map

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1 \cdot \mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{aligned} \kappa_n &= \mathcal{W} \dot{\gamma} . \dot{\gamma} \\ &= (\mathcal{W}(c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2) \\ &= (c_1 \mathcal{W}(\mathbf{t}_1) + c_2 \mathcal{W}(\mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) \end{aligned}$$

Of course, we chose this basis so that the Weingarten map has a better form

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1 \cdot \mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{split} \kappa_n &= \mathcal{W}\dot{\gamma}.\dot{\gamma} \\ &= (\mathcal{W}(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2) \\ &= (c_1\mathcal{W}(\mathbf{t}_1) + c_2\mathcal{W}(\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= (c_1\kappa_1\mathbf{t}_1 + c_2\kappa_2\mathbf{t}_2).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \end{split}$$

And its application can now be written in terms of  $\kappa_1$  and  $\kappa_2$ 

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1 \cdot \mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\begin{aligned}
\kappa_1 \kappa_2 &= \text{Gaussian curvature} \\
\frac{\kappa_1 + \kappa_2}{2} &= \text{Mean curvature}
\end{aligned}$ 

$$\begin{split} \kappa_n &= \mathcal{W} \dot{\gamma} . \dot{\gamma} \\ &= (\mathcal{W}(c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2) \\ &= (c_1 \mathcal{W}(\mathbf{t}_1) + c_2 \mathcal{W}(\mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) \\ &= (c_1 \kappa_1 \mathbf{t}_1 + c_2 \kappa_2 \mathbf{t}_2) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) \\ &= c_1^2 \kappa_1 (\mathbf{t}_1 . \mathbf{t}_1) + \end{split}$$

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature} \\
\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{split} \kappa_n &= \mathcal{W}\dot{\gamma}.\dot{\gamma} \\ &= (\mathcal{W}(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2) \\ &= (c_1\mathcal{W}(\mathbf{t}_1) + c_2\mathcal{W}(\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= (c_1\kappa_1\mathbf{t}_1 + c_2\kappa_2\mathbf{t}_2).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= c_1^2\kappa_1(\mathbf{t}_1.\mathbf{t}_1) + c_1c_2\kappa_1(\mathbf{t}_1.\mathbf{t}_2) \\ &+ \end{split}$$

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{split} \kappa_n &= \mathcal{W} \dot{\gamma} . \dot{\gamma} \\ &= (\mathcal{W}(c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2) \\ &= (c_1 \mathcal{W}(\mathbf{t}_1) + c_2 \mathcal{W}(\mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) \\ &= (c_1 \kappa_1 \mathbf{t}_1 + c_2 \kappa_2 \mathbf{t}_2) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) \\ &= c_1^2 \kappa_1 (\mathbf{t}_1 . \mathbf{t}_1) + c_1 c_2 \kappa_1 (\mathbf{t}_1 . \mathbf{t}_2) \\ &+ c_2 c_1 \kappa_2 (\mathbf{t}_2 . \mathbf{t}_1) + \end{split}$$

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

 $\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$ 

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{split} \kappa_n &= \mathcal{W} \dot{\gamma} . \dot{\gamma} \\ &= (\mathcal{W}(c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2) \\ &= (c_1 \mathcal{W}(\mathbf{t}_1) + c_2 \mathcal{W}(\mathbf{t}_2)) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) \\ &= (c_1 \kappa_1 \mathbf{t}_1 + c_2 \kappa_2 \mathbf{t}_2) . (c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2)) \\ &= c_1^2 \kappa_1 (\mathbf{t}_1 . \mathbf{t}_1) + c_1 c_2 \kappa_1 (\mathbf{t}_1 . \mathbf{t}_2) \\ &+ c_2 c_1 \kappa_2 (\mathbf{t}_2 . \mathbf{t}_1) + c_2^2 \kappa_2 (\mathbf{t}_2 . \mathbf{t}_2) \end{split}$$

 $\begin{aligned} \mathcal{W} & \text{is symmetric.} \\ \text{Denote its eigenvalues, } \kappa_1 \text{ and } \kappa_2. \\ \text{i.e. there exist } \mathbf{t}_1 \text{ and } \mathbf{t}_2 \text{ unit vectors so that} \\ \mathcal{W} \mathbf{t}_1 &= \kappa_1 \mathbf{t}_1 \text{ and} \\ \mathcal{W} \mathbf{t}_2 &= \kappa_2 \mathbf{t}_2 \\ \text{Assume } \kappa_1 \neq \kappa_2, \text{ then } \mathbf{t}_1.\mathbf{t}_2 &= 0 \end{aligned}$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

$$\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$$

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{split} \kappa_n &= \mathcal{W}\dot{\gamma}.\dot{\gamma} \\ &= (\mathcal{W}(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2) \\ &= (c_1\mathcal{W}(\mathbf{t}_1) + c_2\mathcal{W}(\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= (c_1\kappa_1\mathbf{t}_1 + c_2\kappa_2\mathbf{t}_2).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= c_1^2\kappa_1(\mathbf{t}_1.\mathbf{t}_1) + c_1c_2\kappa_1\underbrace{(\mathbf{t}_1.\mathbf{t}_2)}_0 \\ &+ c_2c_1\kappa_2\underbrace{(\mathbf{t}_2.\mathbf{t}_1)}_0 + c_2^2\kappa_2(\mathbf{t}_2.\mathbf{t}_2) \end{split}$$

By orthogonality, two dot products are 0

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1 \cdot \mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

$$\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$$

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{split} \kappa_n &= \mathcal{W}\dot{\gamma}.\dot{\gamma} \\ &= (\mathcal{W}(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2) \\ &= (c_1\mathcal{W}(\mathbf{t}_1) + c_2\mathcal{W}(\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= (c_1\kappa_1\mathbf{t}_1 + c_2\kappa_2\mathbf{t}_2).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= c_1^2\kappa_1\underbrace{(\mathbf{t}_1.\mathbf{t}_1)}_1 + c_1c_2\kappa_1\underbrace{(\mathbf{t}_1.\mathbf{t}_2)}_0 \\ &+ c_2c_1\kappa_2\underbrace{(\mathbf{t}_2.\mathbf{t}_1)}_0 + c_2^2\kappa_2\underbrace{(\mathbf{t}_2.\mathbf{t}_2)}_1 \end{split}$$

By orthonormality, two of them are 1

 $\mathcal{W}$  is symmetric. Denote its eigenvalues,  $\kappa_1$  and  $\kappa_2$ . i.e. there exist  $\mathbf{t}_1$  and  $\mathbf{t}_2$  unit vectors so that  $\mathcal{W}\mathbf{t}_1 = \kappa_1\mathbf{t}_1$  and  $\mathcal{W}\mathbf{t}_2 = \kappa_2\mathbf{t}_2$ Assume  $\kappa_1 \neq \kappa_2$ , then  $\mathbf{t}_1.\mathbf{t}_2 = 0$ 

Writing  $\mathcal{W}$  in terms of the basis  $\mathbf{t}_1$  and  $\mathbf{t}_2$ ,

$$\begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$$

 $\frac{\kappa_1 \kappa_2}{2} = \text{Gaussian curvature}$  $\frac{\kappa_1 + \kappa_2}{2} = \text{Mean curvature}$ 

$$\begin{split} \kappa_n &= \mathcal{W}\dot{\gamma}.\dot{\gamma} \\ &= (\mathcal{W}(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2) \\ &= (c_1\mathcal{W}(\mathbf{t}_1) + c_2\mathcal{W}(\mathbf{t}_2)).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= (c_1\kappa_1\mathbf{t}_1 + c_2\kappa_2\mathbf{t}_2).(c_1\mathbf{t}_1 + c_2\mathbf{t}_2)) \\ &= c_1^2\kappa_1\underbrace{(\mathbf{t}_1.\mathbf{t}_1)}_1 + c_1c_2\kappa_1\underbrace{(\mathbf{t}_1.\mathbf{t}_2)}_0 \\ &+ c_2c_1\kappa_2\underbrace{(\mathbf{t}_2.\mathbf{t}_1)}_0 + c_2^2\kappa_2\underbrace{(\mathbf{t}_2.\mathbf{t}_2)}_1 \\ &= c_1^2\kappa_1 + c_2^2\kappa_2 \end{split}$$

So we have the computation of the normal curvature entirely in terms of  $\dot{\gamma}(t_0)$ ,  $\kappa_i$  and  $\mathbf{t}_i$ 

•

We use  $\mathcal{W}$  only to obtain  $\kappa_i$  and  $\mathbf{t}_i$ 

Now given any curve, to compute  $\kappa_n$ , all we need from the curve is its velocity vector

•

We find out the coefficients of it when written in terms of  $\mathbf{t}_1$  and  $\mathbf{t}_2$ 

•

And we use them along with  $\kappa_1$  and  $\kappa_2$  in the highlighted formula for  $\kappa_n$ .

•

We will now use the fact that  $\dot{\gamma}(t_0)$ ,  $\mathbf{t}_1$  and  $\mathbf{t}_2$  are all unit vectors

•

to write the coefficients in a more revealing form

•





•



## and $\mathbf{t}_2$ form a basis

$$\kappa_n = c_1^2 \kappa_1 + c_2^2 \kappa_2$$
  
where,  $\dot{\gamma}(t_0) = c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2$ 

•



in terms of which we can write  $\dot{\gamma}(t_0)$ 

$$\kappa_n = c_1^2 \kappa_1 + c_2^2 \kappa_2$$
  
where,  $\dot{\gamma}(t_0) = c_1 \mathbf{t}_1 + c_2 \mathbf{t}_2$ 

•



Even if  $\dot{\gamma}(t_0)$  is not between the eigen-vectors

•



we can always replace one vector by the negative

•



No matter where  $\dot{\gamma}(t_0)$  is placed,



we can ensure that it is in between by replacing one or more eigenvectors by their negatives

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 



Since all the vectors are unit vectors, the coefficients can be written in a better form

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$



We can, therefore, express the normal curvature along  $\dot{\gamma}(t_0)$  in terms of the angle it makes with  $\mathbf{t}_1$ .

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

·

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
$$= \cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$$



and exploit a standard trigonometric identity

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

•

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 



to express it in a very revealing form

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 



We may always assume that we labelled the smaller eigenvalue as the first

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

•

Since we are adding a negative number or 0



We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

•

$$\kappa_n = \kappa_2$$
 if and only if  $\cos^2(\theta) = 0$   
if and only if  $\theta = \pi/2$ 

We will now check when it is equal

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

 $\kappa_n = \kappa_2$  if and only if  $\cos^2(\theta) = 0$ if and only if  $\theta = \pi/2$ if and only if  $\dot{\gamma}(t_0)$  makes angle  $\pi/2$  with  $\mathbf{t}_1$ 

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

 $\kappa_n = \kappa_2$  if and only if  $\cos^2(\theta) = 0$ if and only if  $\theta = \pi/2$ if and only if  $\dot{\gamma}(t_0)$  makes angle  $\pi/2$  with  $\mathbf{t}_1$ if and only if  $\dot{\gamma}(t_0)$  makes angle 0 with  $\mathbf{t}_2$ 

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

 $\kappa_n = \kappa_2$  if and only if  $\cos^2(\theta) = 0$ if and only if  $\theta = \pi/2$ if and only if  $\dot{\gamma}(t_0)$  makes angle  $\pi/2$  with  $\mathbf{t}_1$ if and only if  $\dot{\gamma}(t_0)$  makes angle 0 with  $\mathbf{t}_2$ i.e.  $\dot{\gamma}(t_0)$  is aligned with  $\mathbf{t}_2$ 

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

 $\kappa_n = \kappa_2$  if and only if  $\cos^2(\theta) = 0$ if and only if  $\theta = \pi/2$ if and only if  $\dot{\gamma}(t_0)$  makes angle  $\pi/2$  with  $\mathbf{t}_1$ if and only if  $\dot{\gamma}(t_0)$  makes angle 0 with  $\mathbf{t}_2$ i.e.  $\dot{\gamma}(t_0)$  is aligned with  $\mathbf{t}_2$ 

Therefore,

**Proposition.**  $\kappa_2$  is the maximum possible normal curvature of a curve at that point.

Now we see that  $\kappa_1$  and  $\kappa_2$  have a geometric interpretation

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

 $\kappa_n = \kappa_2$  if and only if  $\cos^2(\theta) = 0$ if and only if  $\theta = \pi/2$ if and only if  $\dot{\gamma}(t_0)$  makes angle  $\pi/2$  with  $\mathbf{t}_1$ if and only if  $\dot{\gamma}(t_0)$  makes angle 0 with  $\mathbf{t}_2$ i.e.  $\dot{\gamma}(t_0)$  is aligned with  $\mathbf{t}_2$ 

Therefore,

**Proposition.**  $\kappa_2$  is the maximum possible normal curvature of a curve at that point.

**Exercise.**  $\kappa_1$  is the minimum possible normal curvature of a curve at that point.

This exercise can be worked out in exactly the same way

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

 $\kappa_n = \kappa_2$  if and only if  $\cos^2(\theta) = 0$ if and only if  $\theta = \pi/2$ if and only if  $\dot{\gamma}(t_0)$  makes angle  $\pi/2$  with  $\mathbf{t}_1$ if and only if  $\dot{\gamma}(t_0)$  makes angle 0 with  $\mathbf{t}_2$ i.e.  $\dot{\gamma}(t_0)$  is aligned with  $\mathbf{t}_2$ 

Therefore,

**Proposition.**  $\kappa_2$  is the maximum possible normal curvature of a curve at that point.  $\mathbf{t}_2$  is the direction along which the normal curvature is maximum.

**Exercise.**  $\kappa_1$  is the minimum possible normal curvature of a curve at that point.

We can even give a geometric interpretation to  $t_1$  and  $t_2$ 

We can always choose  $\mathbf{t}_1$  and  $\mathbf{t}_2$  so that,  $\dot{\gamma}(t_0) = \cos(\theta)\mathbf{t}_1 + \sin(\theta)\mathbf{t}_2$ 

Therefore,

$$\kappa_n = \cos^2(\theta)\kappa_1 + \sin^2(\theta)\kappa_2$$
  
=  $\cos^2(\theta)\kappa_1 + (1 - \cos^2(\theta))\kappa_2$   
=  $\kappa_2 + (\kappa_1 - \kappa_2)\cos^2(\theta)$ 

Assume  $\kappa_1 \leq \kappa_2$ ,

 $\kappa_n = \kappa_2 + \text{some negative number}$ 

So,  $\kappa_n \leq \kappa_2$ .

 $\kappa_n = \kappa_2$  if and only if  $\cos^2(\theta) = 0$ if and only if  $\theta = \pi/2$ if and only if  $\dot{\gamma}(t_0)$  makes angle  $\pi/2$  with  $\mathbf{t}_1$ if and only if  $\dot{\gamma}(t_0)$  makes angle 0 with  $\mathbf{t}_2$ i.e.  $\dot{\gamma}(t_0)$  is aligned with  $\mathbf{t}_2$ 

Therefore,

**Proposition.**  $\kappa_2$  is the maximum possible normal curvature of a curve at that point.  $\mathbf{t}_2$  is the direction along which the normal curvature is maximum.

**Exercise.**  $\kappa_1$  is the minimum possible normal curvature of a curve at that point.  $\mathbf{t}_1$  is the direction along which the normal curvature is minimum.

 $\kappa_1$  and  $\kappa_2$  are called the **principal** curvatures  $\mathbf{t}_1$  and  $\mathbf{t}_2$  are called the **principal** directions