JIC = det VW, Gaussian curvature

We saw that the determinant of the Weingarten map depends only on the first fundamental form




JIC = det VW, Gaussian curvature

This 1s called the Gaussian curvature



JIC = det VW, Gaussian curvature

This makes sense because the determinant does not depend on the basis



JIC = det VW, Gaussian curvature

H = w, Mean Curvature

Similarly, we can define the mean curvature as the trace of the Weingarten map



JIC = det VW, Gaussian curvature

H = w, Mean Curvature

The trace also does not depend on the basis chosen



JIC = det VW, Gaussian curvature

H = w, Mean Curvature

W is symmetric.

Recall, from linear algebra that symmetric matrices are diagonalizable
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H = w, Mean Curvature

W is symmetric.

and the eigenvalues make up the diagonal
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W is symmetric.
Denote its eigenvalues, k1 and ks.

We will see that these eigenvalues have a special meaning for surfaces



JIC = det VW, Gaussian curvature

H = w, Mean Curvature

W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Even their eigenvectors have a special significance
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H = w, Mean Curvature

W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

If the eigenvalues are distinct, then the eigenvectors are orthogonal
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H = w, Mean Curvature

W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,

/{10
OK/Q

It is with respect to this orthonormal basis, that the map is diagonal
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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Since the determinant remains unchanged by a change of basis
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

We can write the Gaussian curvature in terms of the eigenvalues
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

@ — Mean curvature

And similarly for the mean curvature
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W is symmetric.

Denote its eigenvalues, x1 and rs.

1.e. there exist t1 and to unit vectors so that
Wt = rit1 and

th = /432132

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

Let us try and understand the geometric significance of the eigenvalue s
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

As usual we begin with the study of a curve on a surface
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

@ — Mean curvature

and try and understand the normal curvature
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Kn = W5y
W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that

Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

which we now know can be written using W




JIC = det VW, Gaussian curvature

H = w, Mean Curvature

W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /€1t1 and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

Kn = W5y
== (W(Cltl + 62t2)>.(61t1 + 62t2>

But now we have a new basis, t; and ty convenient for the Weingarten map
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
th — liltl and

th — /432132

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,

/{10
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k1ko = Gaussian curvature

% — Mean curvature

Kn = W5y
— (W(Cltl -+ 62t2)>.(61t1 + 62t2>
= <01W<t1> + CQW(tQ)).(Cltl + 62t2>>

Of course, we chose this basis so that the Weingarten map has a better form
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
th — liltl and

th — /432132

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

Kn = W5y
= (W(erty + cato)).(cr1tq + cots)
= (et W(t1) + oW (t3)).(c1t1 + cota))
= (Cc1K1t1 + cakots). (1t + coto))

And its application can now be written in terms of k1 and ko
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /iltl and

WtQ = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

Kn = W5y
= (W(erty + cato)).(cr1tq + cots)
= (c)W(t1) + oW (t2)).(c1t1 + eota))
= (c1h1t1 4 caratsy). (1t + cota))
= ?Ry (b1t +

Now we distribute the terms
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /iltl and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

Kn = W5y
= (W(Cltl + 62t2)>.(61t1 + CQtQ)
= (et W(t1) + oW (t3)).(c1t1 + cota))
= (c1h1t1 4 carats).(c1t1 + coto))
= ?k1(t1.t1) + creaki(t1.t2)
_|_
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /iltl and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

@ — Mean curvature

Kn = W5y
= (W(c1ty + cots)).(cr1tq + cots)
= (et W(t1) + oW (t3)).(c1t1 + cota))
= (c1K1t1 + coroty).(c1t) + cota))
= ?k1(t1.t1) + creaki(t1.t2)
+ coC1Ko(to.tq)+
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /iltl and

th = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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k1ko = Gaussian curvature

% — Mean curvature

Kn = W5y
= (W(c1ty + cots)).(cr1tq + cots)
= (c)W(t1) + oW (t2)).(c1t1 + eota))
= (c1k1t1 + coroty). (1t + coto))
= ?k1(t1.t1) + creaki(t1.t2)
+ cociKa(to.ty) 4 Corka(ta.ts)
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /iltl and

WtQ = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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OK/Q

k1ko = Gaussian curvature

% — Mean curvature

Kn = W5y
= (W(Cltl + 62t2)>.(61t1 -+ 62t2>
= (et W(t1) + oW (t3)).(c1t1 + cota))
= (Cc1K1t1 + cakots). (1t + coto))
= ?R1(t1.t1) + cicakr (t1.2)

0

+ CoC1K9 (tg.tl) —|—C%/€2(t2.t2)
0

By orthogonality, two dot products are 0
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W is symmetric.

Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /iltl and

WtQ = /igtg

Assume K1 # Ko, then t1.to =0

Writing W in terms of the basis t; and to,
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% — Mean curvature

Kn = W5y
= (W(Cltl + 62t2)>.(61t1 -+ 62t2>
= (et W(t1) + oW (t3)).(c1t1 + cota))
= (Cc1K1t1 + cakots). (1t + coto))
= ?ky (t1.61) Fcrcak (B1.62)

e I
+ CoC1K9 (tg.tl) ‘i_C%KQ (tg.tg)
— e

By orthonormality, two of them are 1
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Denote its eigenvalues, k1 and ks.

1.e. there exist t1 and to unit vectors so that
Wt1 = /iltl and

WtQ = /igtg

Assume K1 # Ko, then t1.to =0
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Kn = W5y
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2 2
= C1K1 + C5K9

So finally we get the following relation



Kn = CiK1 + C3Ka

where, J(tg) = c1t1 + ot

So we have the computation of the normal curvature entirely in terms of §(%y), «; and t;
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where, J(tg) = c1t1 + coto

We use WV only to obtain k; and t;




Kn = CiK1 + C3Ka

where, ¥(t)) = c1t1 + coto

Now given any curve, to compute k,, all we need from the curve is its velocity vector



Kn = CiK1 + C3Ka

where, J(tg) = c1t1 + cotg

We find out the coefficients of it when written in terms of t; and t»
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where, J(tg) = c1t1 + ot

And we use them along with x; and k9 in the highlighted formula for x,,.
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where, J(tg) = c1t1 + ot

We will now use the fact that J(ty), t; and tg are all unit vectors
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where, J(tg) = c1t1 + ot

to write the coeflicients in a more revealing form
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where, J(tg) = c1t1 + cots

The vectors t4
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where, §(tg) = c1t1 + ot

and to form a basis

~
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where, ¥(t)) = c1t1 + coto

in terms of which we can write ()
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Even if 4(t¢) is not between the eigen-vectors
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where, J(tg) = c1t1 + ot

we can always replace one vector by the negative
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where, J(tg) = c1t1 + ot

No matter where (ty) is placed,
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we can ensure that it is in between by replacing one or more eigenvectors by their negatives
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where, J(tg) = c1t1 + ot
We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Since all the vectors are unit vectors, the coeflicients can be written in a better form
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where, J(tg) = c1t1 + ot

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

ki = cos?(0)k1 + sin(0) ks < by

We can, therefore, express the normal curvature along §(¢g) in terms of the angle it makes with ;.
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We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

kin = cos?(0) k1 + sin?(0) ks < b1
= cos(0)ky + (1 — cos*(0)) ks

and exploit a standard trigonometric identity
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We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

ki = cos?(0)k1 + sin(0) ks < i
= cos(0)ky + (1 — cos*(0)) ks
= kKo + (K1 — Kg) cos?(6)

to express it in a very revealing form
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where, J(tg) = c1t1 + ot

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

kin = cos?(0) k1 + sin?(0) ks < b1
= cos(0)ky + (1 — cos*(0)) ks

= kKo + (K1 — Kg) cos?(6)

Assume k1 < Ko,

K, = K9 4 some negative number

We may always assume that we labelled the smaller eigenvalue as the first
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where, J(tg) = c1t1 + ot

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

kin = cos?(0) k1 + sin?(0) ks < b1
= cos(0)ky + (1 — cos*(0)) ks

= kKo + (K1 — Kg) cos?(6)

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.

Since we are adding a negative number or 0
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where, ’?(to) = c1t1 + oty if and only if 0 = 7T/2

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

ko = cos?(0) k1 + sin?(6) ks
= cos(0)ky + (1 — cos*(0)) ks

= Ko + (K1 — ko) cos™(0)

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.

We will now check when it is equal
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Where, ’?(tg) — Cltl -+ CQtQ if and only if 0 = 7T/2

We can always choose t; and t9 so that, if and only if §(fo) makes angle 7 /2 with ¢,
F(to) = cos(0)t; + sin(0)ts

Therefore,

ko = cos™(0) k1 + sin?(6) ks
= cos(0)ky + (1 — cos*(0)) ks

= Ko + (K1 — ko) cos?(0)

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.
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Where, ’?(tg) — Cltl -+ CQtQ if and only if 0 = 7T/2
if and only if §(y) makes angle 7/2 with t;

We can always choose t; and ts so that, . o ,
if and only if §(¢p) makes angle 0 with t,

F(to) = cos(f)ty + sin(0)ts

Therefore,

ko = cos™(0) k1 + sin?(6) ks
= cos(0)ky + (1 — cos*(0)) ks

= Ko + (K1 — ko) cos?(0)

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.
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Where, ’?(to) — Cltl -+ CQtQ if and only if 0 = 7T/2

if and only if J(t) makes angle 7 /2 with t;
if and only if §(¢p) makes angle 0 with t,
i.e. Y(to) is aligned with to

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

ko = cos™(0) k1 + sin?(6) ks
= cos(0)ky + (1 — cos*(0)) ks

= Ko + (K1 — ko) cos?(0)

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.



Kn = CiK1 + C3Ka Ky = Ko if and only if cos?(6) = 0

where, ’?(to) = c1t1 + oty if and only if 6 = 7T/2

if and only if 7(¢y) makes angle 7 /2 with t;
if and only if §(¢y) makes angle 0 with t,
i.e. Y(to) is aligned with to

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,
Therefore,

ko = cos™(0) k1 + sin?(6) ks
= cos(0)ky + (1 — cos*(0)) ks

= kKo + (K1 — Kg) cos?(6)

Proposition. ko 1s the maxrimum possible normal
curvature of a curve at that point.

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.

Now we see that k1 and k9 have a geometric interpretation



Kn = CiK1 + C3Ka
where, J(tg) = c1t1 + ot

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

ko = cos™(0) k1 + sin?(6) ks
= cos(0)ky + (1 — cos*(0)) ks
= kKo + (K1 — Kg) cos?(6)

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.

Ky = Ko if and only if cos?(6) = 0

if and only if 8 = 7 /2

if and only if 7(¢y) makes angle 7 /2 with t;
if and only if §(¢y) makes angle 0 with t,
i.e. Y(to) is aligned with to

Therefore,

Proposition. ko 1s the maxrimum possible normal
curvature of a curve at that point.

Exercise. k1 is the minimum possible normal curvature
of a curve at that point.

This exercise can be worked out in exactly the same way




Kn = CiK1 + C3Ka
where, J(tg) = c1t1 + ot

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,

ko = cos™(0) k1 + sin?(6) ks
= cos(0)ky + (1 — cos*(0)) ks
= kKo + (K1 — Kg) cos?(6)

Assume k1 < Ko,
K, = K9 4 some negative number

S0, Ky, < Ko.

Ky = Ko if and only if cos?(6) = 0

if and only if 8 = 7 /2

if and only if 7(¢y) makes angle 7 /2 with t;
if and only if §(¢y) makes angle 0 with t,
i.e. Y(to) is aligned with to

Therefore,
Proposition. ko 1s the maxrimum possible normal

curvature of a curve at that point. to is the direc-
tion along which the normal curvature is mazimum.

Exercise. x4 is the minimum possible normal curvature
of a curve at that point.

We can even give a geometric intepretation to t; and %



Kn = CiK1 + C3Ka Ky = ko if and only if cos?() = 0

Where, ’?(to) — Cltl -+ CQtQ if and only if 0 = 7T/2

if and only if J(t) makes angle 7 /2 with t;
if and only if §(¢p) makes angle 0 with t,
i.e. Y(to) is aligned with to

We can always choose t; and ts so that,
F(to) = cos(f)ty + sin(0)ts

Therefore,
Therefore,

2 .9
Kn = cos”(0)k1 +sin”(0)k oy . . .

n_ 2(9) ! ) (6) 39 Proposition. ko is the maximum possible normal

= cos™(0)r1 + (1 — C;)S (0))k2 curvature of a curve at that point. to s the direc-

= Ko + (K1 — K2) cos™(0) tion along which the normal curvature s mazximum.

Exercise. x4 is the minimum possible normal curvature
Assume k1 < Ko, of a curve at that point. t; is the direction along which
, the normal curvature is minimum.
Kn, = Ko + some negative number
k1 and k9 are called the principal curvatures

S0, Ky, < Ko.
" t; and ty are called the principal directions



