$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature $\mathcal{H}=\frac{\text { trace } \mathcal{W}}{2}$, Mean Curvature

Similarly, we can define the mean curvature as the trace of the Weingarten map
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature

 $\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature$\mathcal{W}$ is symmetric.
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
and the eigenvalues make up the diagonal
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature

 $\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature$\mathcal{W}$ is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$

Even their eigenvectors have a special significance

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature

$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

It is with respect to this orthonormal basis, that the map is diagonal
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature

$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature

$$
\kappa_{n}
$$

\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature

$$
\kappa_{n}=\mathcal{W} \dot{\gamma} \cdot \dot{\gamma}
$$

\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.

$$
\begin{aligned}
\kappa_{n} & =\mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
& =\left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)
\end{aligned}
$$

Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature

But now we have a new basis, \mathbf{t}_{1} and \mathbf{t}_{2} convenient for the Weingarten map
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.

$$
\begin{aligned}
\kappa_{n} & =\mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
& =\left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
& \left.=\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right)
\end{aligned}
$$

i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that

$$
\begin{aligned}
\kappa_{n} & =\mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
& =\left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
& \left.=\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
& \left.=\left(c_{1} \kappa_{1} \mathbf{t}_{1}+c_{2} \kappa_{2} \mathbf{t}_{2}\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right)
\end{aligned}
$$

$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\text { trace } \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature

$$
\begin{aligned}
\kappa_{n} & =\mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
& =\left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
& \left.=\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
& \left.=\left(c_{1} \kappa_{1} \mathbf{t}_{1}+c_{2} \kappa_{2} \mathbf{t}_{2}\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
& =c_{1}^{2} \kappa_{1}\left(\mathbf{t}_{1} \cdot \mathbf{t}_{1}\right)+c_{1} c_{2} \kappa_{1}\left(\mathbf{t}_{1} \cdot \mathbf{t}_{2}\right) \\
& +
\end{aligned}
$$

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\text { trace } \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$

$$
\begin{aligned}
\kappa_{n}= & \mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
= & \left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
= & \left.\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & \left.\left(c_{1} \kappa_{1} \mathbf{t}_{1}+c_{2} \kappa_{2} \mathbf{t}_{2}\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & c_{1}^{2} \kappa_{1}\left(\mathbf{t}_{1} \cdot \mathbf{t}_{1}\right)+c_{1} c_{2} \kappa_{1}\left(\mathbf{t}_{1} \cdot \mathbf{t}_{2}\right) \\
& +c_{2} c_{1} \kappa_{2}\left(\mathbf{t}_{2} \cdot \mathbf{t}_{1}\right)+
\end{aligned}
$$

Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\text { trace } \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathbf{t}_{2}=\kappa_{2} \mathbf{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature

$$
\begin{aligned}
\kappa_{n}= & \mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
= & \left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
= & \left.\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & \left.\left(c_{1} \kappa_{1} \mathbf{t}_{1}+c_{2} \kappa_{2} \mathbf{t}_{2}\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & c_{1}^{2} \kappa_{1}\left(\mathbf{t}_{1} \cdot \mathbf{t}_{1}\right)+c_{1} c_{2} \kappa_{1}\left(\mathbf{t}_{1} \cdot \mathbf{t}_{2}\right) \\
& +c_{2} c_{1} \kappa_{2}\left(\mathbf{t}_{2} \cdot \mathbf{t}_{1}\right)+c_{2}^{2} \kappa_{2}\left(\mathbf{t}_{2} \cdot \mathbf{t}_{2}\right)
\end{aligned}
$$

$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathrm{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\begin{aligned}
\kappa_{n}= & \mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
= & \left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
= & \left.\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & \left.\left(c_{1} \kappa_{1} \mathbf{t}_{1}+c_{2} \kappa_{2} \mathbf{t}_{2}\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & c_{1}^{2} \kappa_{1}\left(\mathbf{t}_{1} \cdot \mathbf{t}_{1}\right)+c_{1} c_{2} \kappa_{1} \underbrace{\left(\mathbf{t}_{1} \cdot \mathbf{t}_{2}\right)}_{0} \\
& +c_{2} c_{1} \kappa_{2} \underbrace{\left(\mathbf{t}_{2} \cdot \mathbf{t}_{1}\right)}_{0}+c_{2}^{2} \kappa_{2}\left(\mathbf{t}_{2} \cdot \mathbf{t}_{2}\right)
\end{aligned}
$$

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\text { trace } \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\begin{aligned}
\kappa_{n}= & \mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
= & \left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
= & \left.\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & \left.\left(c_{1} \kappa_{1} \mathbf{t}_{1}+c_{2} \kappa_{2} \mathbf{t}_{2}\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & c_{1}^{2} \kappa_{1} \underbrace{\left(\mathbf{t}_{1} \cdot \mathbf{t}_{1}\right)}_{1}+c_{1} c_{2} \kappa_{1} \underbrace{\left(\mathbf{t}_{1} \cdot \mathbf{t}_{2}\right)}_{0} \\
& +c_{2} c_{1} \kappa_{2} \underbrace{\left(\mathbf{t}_{2} \cdot \mathbf{t}_{1}\right)}_{0}+c_{2}^{2} \kappa_{2} \underbrace{\left(\mathbf{t}_{2} \cdot \mathbf{t}_{2}\right)}_{1}
\end{aligned}
$$

$$
\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right)
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\mathcal{K}=\operatorname{det} \mathcal{W}$, Gaussian curvature
$\mathcal{H}=\frac{\operatorname{trace} \mathcal{W}}{2}$, Mean Curvature
\mathcal{W} is symmetric.
Denote its eigenvalues, κ_{1} and κ_{2}.
i.e. there exist \mathbf{t}_{1} and \mathbf{t}_{2} unit vectors so that
$\mathcal{W} \mathbf{t}_{1}=\kappa_{1} \mathbf{t}_{1}$ and
$\mathcal{W} \mathrm{t}_{2}=\kappa_{2} \mathrm{t}_{2}$
Assume $\kappa_{1} \neq \kappa_{2}$, then $\mathbf{t}_{1} \cdot \mathbf{t}_{2}=0$
Writing \mathcal{W} in terms of the basis \mathbf{t}_{1} and \mathbf{t}_{2},

$$
\begin{aligned}
\kappa_{n} & =\mathcal{W} \dot{\gamma} \cdot \dot{\gamma} \\
& =\left(\mathcal{W}\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right) \\
& \left.=\left(c_{1} \mathcal{W}\left(\mathbf{t}_{1}\right)+c_{2} \mathcal{W}\left(\mathbf{t}_{2}\right)\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
& \left.=\left(c_{1} \kappa_{1} \mathbf{t}_{1}+c_{2} \kappa_{2} \mathbf{t}_{2}\right) \cdot\left(c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}\right)\right) \\
= & c_{1}^{2} \kappa_{1} \underbrace{\left(\mathbf{t}_{1} \cdot \mathbf{t}_{1}\right)}_{1}+c_{1} c_{2} \kappa_{1} \underbrace{\left(\mathbf{t}_{1} \cdot \mathbf{t}_{2}\right)}_{0} \\
& +c_{2} c_{1} \kappa_{2} \underbrace{\left(\mathbf{t}_{2} \cdot \mathbf{t}_{1}\right)}_{0}+c_{2}^{2} \kappa_{2} \underbrace{\left(\mathbf{t}_{2} \cdot \mathbf{t}_{2}\right)}_{1} \\
= & c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}
\end{aligned}
$$

$\kappa_{1} \kappa_{2}=$ Gaussian curvature
$\frac{\kappa_{1}+\kappa_{2}}{2}=$ Mean curvature
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$

We use \mathcal{W} only to obtain κ_{i} and \mathbf{t}_{i}
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$

The vectors \mathbf{t}_{1}
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$

and \mathbf{t}_{2} form a basis
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$

$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$

Even if $\dot{\gamma}\left(t_{0}\right)$ is not between the eigen-vectors
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$

$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$

we can ensure that it is in between by replacing one or more eigenvectors by their negatives
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that,
$\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$

$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$

Therefore,

$$
\kappa_{n}=\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2}
$$

We can, therefore, express the normal curvature along $\dot{\gamma}\left(t_{0}\right)$ in terms of the angle it makes with \mathbf{t}_{1}.
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2}
\end{aligned}
$$

and exploit a standard trigonometric identity
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,
$\kappa_{n}=\kappa_{2}+$ some negative number
So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle $\pi / 2$ with \mathbf{t}_{1}
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle $\pi / 2$ with \mathbf{t}_{1} if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle 0 with \mathbf{t}_{2}
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle $\pi / 2$ with \mathbf{t}_{1} if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle 0 with \mathbf{t}_{2} i.e. $\dot{\gamma}\left(t_{0}\right)$ is aligned with \mathbf{t}_{2}
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$

Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle $\pi / 2$ with \mathbf{t}_{1}
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle 0 with \mathbf{t}_{2}
i.e. $\dot{\gamma}\left(t_{0}\right)$ is aligned with \mathbf{t}_{2}

Therefore,
Proposition. κ_{2} is the maximum possible normal curvature of a curve at that point. curvature of a curve at that point.

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

$$
\text { So, } \kappa_{n} \leq \kappa_{2}
$$

$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$

Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle $\pi / 2$ with \mathbf{t}_{1}
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle 0 with \mathbf{t}_{2}
i.e. $\dot{\gamma}\left(t_{0}\right)$ is aligned with \mathbf{t}_{2}

Therefore,
Proposition. κ_{2} is the maximum possible normal curvature of a curve at that point.

Exercise. κ_{1} is the minimum possible normal curvature of a curve at that point.
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,
$\kappa_{n}=\kappa_{2}+$ some negative number
So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle $\pi / 2$ with \mathbf{t}_{1}
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle 0 with \mathbf{t}_{2}
i.e. $\dot{\gamma}\left(t_{0}\right)$ is aligned with \mathbf{t}_{2}

Therefore,
Proposition. κ_{2} is the maximum possible normal curvature of a curve at that point. \mathbf{t}_{2} is the direction along which the normal curvature is maximum.

Exercise. κ_{1} is the minimum possible normal curvature of a curve at that point.
$\kappa_{n}=c_{1}^{2} \kappa_{1}+c_{2}^{2} \kappa_{2}$
where, $\dot{\gamma}\left(t_{0}\right)=c_{1} \mathbf{t}_{1}+c_{2} \mathbf{t}_{2}$
We can always choose \mathbf{t}_{1} and \mathbf{t}_{2} so that, $\dot{\gamma}\left(t_{0}\right)=\cos (\theta) \mathbf{t}_{1}+\sin (\theta) \mathbf{t}_{2}$
Therefore,

$$
\begin{aligned}
\kappa_{n} & =\cos ^{2}(\theta) \kappa_{1}+\sin ^{2}(\theta) \kappa_{2} \\
& =\cos ^{2}(\theta) \kappa_{1}+\left(1-\cos ^{2}(\theta)\right) \kappa_{2} \\
& =\kappa_{2}+\left(\kappa_{1}-\kappa_{2}\right) \cos ^{2}(\theta)
\end{aligned}
$$

Assume $\kappa_{1} \leq \kappa_{2}$,

$$
\kappa_{n}=\kappa_{2}+\text { some negative number }
$$

So, $\kappa_{n} \leq \kappa_{2}$.
$\kappa_{n}=\kappa_{2}$ if and only if $\cos ^{2}(\theta)=0$
if and only if $\theta=\pi / 2$
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle $\pi / 2$ with \mathbf{t}_{1}
if and only if $\dot{\gamma}\left(t_{0}\right)$ makes angle 0 with \mathbf{t}_{2}
i.e. $\dot{\gamma}\left(t_{0}\right)$ is aligned with \mathbf{t}_{2}

Therefore,
Proposition. κ_{2} is the maximum possible normal curvature of a curve at that point. \mathbf{t}_{2} is the direction along which the normal curvature is maximum.

Exercise. κ_{1} is the minimum possible normal curvature of a curve at that point. \mathbf{t}_{1} is the direction along which the normal curvature is minimum.
κ_{1} and κ_{2} are called the principal curvatures \mathbf{t}_{1} and \mathbf{t}_{2} are called the principal directions

