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Exercise. Show that any vector that belongs to the
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The tangent vectors at p ∈ S ⊂ R3 always belong to the
span of σx(p) and σy(p).

Exercise. Show that any vector that belongs to the
span of σx(p) and σy(p), is a tangent vector.

Exercise. Show that σ is regular at p if and only if the
tangent vectors at p form a two dimensional subspace of
R3.
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

S ⊂ R3

Consider a surface in space
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

U → S ⊂ R3

and a surface patch which is a map

σ(U)

x

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

U → S ⊂ R3

onto a part of the surface

σ(U) ⊂ S

x

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

As usual we denote it by σ.

σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ S

Now consider a curve on the surface

σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ S

parametrized by γ

(α, β)

γ σ(U) ⊂ S

xσ

U

49



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S

and let us assume it lies in the image of the surface patch

(α, β)

γ σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S

But it is also a curve in space

(α, β)

γ σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S

that happens to lie on a surface.

(α, β)

γ σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S

Let us see what lying on a surface

(α, β)

γ σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

tells us about this space curve.

(α, β)

γ σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

A parameter t goes to γ(t)

(α, β)

γ

γ(t)

t

σ(U) ⊂ S

xσ

U
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U

But to each γ(t) ∈ σ(U), σ corresponds a δ(t) ∈ U

(α, β)

γ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U

so that γ(t) = σ(δ(t))

(α, β)

γ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U

Note that this gives a δ(t) for each t

(α, β)

γ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U

so it defines a map.

(α, β)

γ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)

59



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))

Its smoothness takes some work, but assume it for now.

(α, β)

γ = σ ◦ δ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

If we let x(t) and y(t) denote the coordinates of δ(t),

(α, β)

γ = σ ◦ δ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

chain rule allows us to express the derivatives

(α, β)

γ = σ ◦ δ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t))+

entirely in terms of the derivatives of δ and σ

(α, β)

γ = σ ◦ δ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)

63



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

(α, β)

γ = σ ◦ δ

γ(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

The left hand side is the velocity vector of γ in space

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

The right hand side expresses it in terms of the patch

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

i.e., in terms of the velocity of δ.

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
δ̇(t)

67



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

Essentially, γ̇(t) can be written in terms of the surface patch, specifically, σx and σy.

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

σx

σy

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
δ̇(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

The coefficients come from δ̇(t)

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

σx

σy

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
δ̇(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

(which is also the coordinates provides by the surface patch).

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

σx

σy

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
δ̇(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

This shows why partial derivatives feature at all

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

σx

σy

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
δ̇(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

and the importance of regularity...

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

σx

σy

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
δ̇(t)
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A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

σ : U → S ⊂ R3

γ : (α, β)→ σ(U) ⊂ S ⊂ R3

δ : (α, β)→ U
γ(t) = σ(δ(t))
δ(t) = (x(t), y(t))

γ̇(t) = x′(t)σx(δ(t)) + y′(t)σy(δ(t))

...to ensure σx and σy are linearly independent

(α, β)

γ = σ ◦ δ

γ(t)

γ̇(t)

σx

σy

t

δ

σ(U) ⊂ S

xσ

U

δ(t)
δ̇(t)
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