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where V(f)(z,y) = (fo(x,y).fy(z,y)),
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Curves on surfaces

Definition. v € R? is a tangent vector of the surface
S at a point p, if there is a v : (o, 8) — S C R3 so that

p="(t) and v = 5(t)

v:(a,B) = S C R?is a curve.
o:U — § a surface patch.

S0, y(t) = o(x(t), y(t)) =p € S

Y(t) = 2'(t)ou(p) + ' (t)oy(p)

The tangent vectors at p € S C R? always belong to the
span of o,(p) and o,(p).

Exercise. Show that any vector that belongs to the
span of o,(p) and o,(p), is a tangent vector.
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f:R>—=R Definition. v € R? is a tangent vector of the surface
v:(a, B) — R? S at a point p, if there is a v : (o, 8) — S C R3 so that
(1) = (), y(t)) p=7(t) and v = 3(1)

fov:(a,f)—R
v:(a,B) = S C R?is a curve.

Folz(to), y(t)) == (f o ¥)(ty) = V(f)(lg),V’ o:U — § a surface patch.
where V(f)(z,y) = (fo(x,y).fy(, ). S0, 7(t) = o(x(t), y(t)) =p € S

= (%), S(4) = o /

Y(t) = 2'(t)ou(p) + ' (t)oy(p)
and p = (i), o) :
fR*—=R The tangent vectors at p € S C R? always belong to the
v:R* = R? span of o,(p) and o,(p).
v(u,v) = (x(u, v), y(u,v)) ,
fory: R? 5 R Exercise. Show that any vector that belongs to the
span of o,(p) and o,(p), is a tangent vector.

(f o 7)ulug, vo) Exercise. Show that o is regular at p if and only if the
= fo(x(ug, vo), y(ug, vo))Tu(wo, vo) tangent vectors at p form a two dimensional subspace of

+ fy(@(ug, vo), y(uo, v0))yu(o, Vo) R3.
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

S C R’

Consider a surface in space
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U—SCR?

and a surface patch which is a map
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

U—SCR?

onto a part of the surface




A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

As usual we denote it by o.
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Note:: This was not part of the lecture, however, since
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to support along with “subtitles”.
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v (a,B8) = S

Now consider a curve on the surface
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?
v (a,B8) = S

parametrized by
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

o:U—SCR?
v:(a,B) = o(U)CS

and let us assume it lies in the image of the surface patch
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.
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v:(a,B) = o(U)CS

But it is also a curve in space
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

o:U—SCR?
v:(a,B) = o(U)CS

that happens to lie on a surface.
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

o:U—SCR?
v:(a,B) = o(U)CS

Let us see what lying on a surface
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

oc:U—SCR’
v:(a,8) = o(U)CSCR’

tells us about this space curve.
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

oc:U—SCR’
v:(a,8) = o(U)CSCR’

A parameter t goes to y(t)
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

v:(a,8) = o(U)CSCR’
6 (a,8) = U

But to each y(t) € o(U), o corresponds a (t) € U
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Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

v:(a,8) = o(U)CSCR’
6 (a,8) = U

so that y(t) = a(d(t))



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

v:(a,8) = o(U)CSCR’
6 (a,8) = U

Note that this gives a d(t) for each ¢




A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

v:(a,8) = o(U)CSCR’
0:(a,08) = U

so it defines a map.



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

oc:U—SCR’

v:(a,8) = o(U)CSCR’

6 (a,8) = U

y(t) = a(d(1)) ?

[ts smoothness takes some work, but assume it for now.




A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

If we let z(t) and y(¢) denote the coordinates of (%),



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

v (a, B) — ( )CSCR’

(@, ) =
(t) = 0(5(75)) ?
(t) = (2(t),y(t))

O«)\QCM

chain rule allows us to express the derivatives



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

entirely in terms of the derivatives of 6 and o




A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

o:U—SCR?

v:(a,8) = o(U)CSCR’

0 (a,8) = U

(t) = o(0(t)) ?

o(t) = (x(t), y(t))

Y(t) = 2'(t)ow(0(2) + y'(t)oy(d(1)) 0 —~
/g(.t)\




A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

The left hand side is the velocity vector of v in space



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

The right hand side expresses it in terms of the patch



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

o:U—SCR?
v:(a,8) = o(U)CSCR’
6:(a,B) = U
(t) = a(d(t)) ?
o(t) = (x(t),y(t))
Y(t) = 2'(t)o.(0(t)) + 4/ (t)oy(0(1)) 0
\/g(;ﬁm)

i.e., in terms of the velocity of 0.




A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

Essentially, /(¢) can be written in terms of the surface patch, specifically, o, and o,.



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

o:U—SCR?
v:(a,8) = o(U)CSCR’
6:(a,B) = U
(t) = a(d(t)) ?
o(t) = (x(t),y(t))
Y(t) = 2'(t)o.(0(t)) + 4/ (t)oy(0(1)) 0
\/g(;ﬁm)

The coefficients come from §(t)



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

(which is also the coordinates provides by the surface patch).



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

This shows why partial derivatives feature at all



A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

and the importance of regularity...




A curve on a surface

Note:: This was not part of the lecture, however, since
there seemed to be some confusion, this adds a diagram
to support along with “subtitles”.

c:-U—SCR?

...to ensure o, and o, are linearly independent



