Chain rule for mult-variable functions

Chain rule for mult-variable functions

$f: \mathbb{R}^{2}$

Chain rule for mult-variable functions

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Chain rule for mult-variable functions

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Chain rule for mult-variable functions

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
$\gamma:(\alpha, \beta)$

Chain rule for mult-variable functions

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
$\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$

Chain rule for mult-variable functions

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}$
$\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$
$\gamma(t)$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t))
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta)
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
(f \circ \gamma)^{\prime}\left(t_{0}\right)
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R} \\
& (f \circ \gamma)^{\prime}\left(t_{0}\right)=f_{x}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) x^{\prime}\left(t_{0}\right)+f_{y}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) y^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R} \\
& \\
& (f \quad \circ \quad \gamma)^{\prime}\left(t_{0}\right) \quad=\quad f_{x}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) x^{\prime}\left(t_{0}\right) \quad+ \\
& f_{y}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) y^{\prime}\left(t_{0}\right)=\left(f_{x}(x, y), f_{y}(x, y)\right) \cdot \dot{\gamma}\left(t_{0}\right)
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R} \\
& \\
& (f \quad \circ \quad \gamma)^{\prime}\left(t_{0}\right) \quad=\quad f_{x}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) x^{\prime}\left(t_{0}\right) \quad+ \\
& f_{y}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) y^{\prime}\left(t_{0}\right)=\nabla(f)\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \cdot \dot{\gamma}\left(t_{0}\right), \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right) \text {, }
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& (f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \cdot \dot{\gamma}\left(t_{0}\right) \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right),
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \cdot \dot{\gamma}\left(t_{0}\right)$,
where $\nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)$,

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \cdot \dot{\gamma}\left(t_{0}\right)
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

Chain rule for mult-variable functions

```
\(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\)
\(\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}\)
\(\gamma(t)=(x(t), y(t))\)
\(f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}\)
\(f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) . \mathbf{v}\),
where \(\nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)\),
\(\mathbf{v}=\dot{\gamma}\left(t_{0}\right)\),
```


Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) . \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

Chain rule for mult-variable functions

```
\(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\)
\(\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}\)
\(\gamma(t)=(x(t), y(t))\)
\(f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}\)
\(f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) . \mathbf{v}\),
where \(\nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)\),
\(\mathbf{v}=\dot{\gamma}\left(t_{0}\right)\),
and \(p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)\)
\(f: \mathbb{R}^{2}\)
```


Chain rule for mult-variable functions

```
\(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\)
\(\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}\)
\(\gamma(t)=(x(t), y(t))\)
\(f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}\)
\(f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) . \mathbf{v}\),
where \(\nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)\),
\(\mathbf{v}=\dot{\gamma}\left(t_{0}\right)\),
and \(p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)\)
\(f: \mathbb{R}^{2} \rightarrow \mathbb{R}\)
```


Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R} \\
& \\
& f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v} \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right), \\
& \mathbf{v}=\dot{\gamma}\left(t_{0}\right), \\
& \text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R} \\
& \\
& f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}, \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right), \\
& \mathbf{v}=\dot{\gamma}\left(t_{0}\right) \\
& \text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \gamma(u, v)
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v} \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right), \\
& \mathbf{v}=\dot{\gamma}\left(t_{0}\right), \\
& \text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \gamma(u, v)=(x(u, v), y(u, v))
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v} \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right), \\
& \mathbf{v}=\dot{\gamma}\left(t_{0}\right), \\
& \text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \gamma(u, v)=(x(u, v), y(u, v)) \\
& f \circ \gamma
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v} \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right), \\
& \mathbf{v}=\dot{\gamma}\left(t_{0}\right), \\
& \text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \gamma(u, v)=(x(u, v), y(u, v)) \\
& f \circ \gamma: \mathbb{R}^{2}
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v} \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right), \\
& \mathbf{v}=\dot{\gamma}\left(t_{0}\right), \\
& \text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \gamma(u, v)=(x(u, v), y(u, v)) \\
& f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R} \\
& \\
& f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v} \\
& \text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right), \\
& \mathbf{v}=\dot{\gamma}\left(t_{0}\right) \\
& \text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \gamma(u, v)=(x(u, v), y(u, v)) \\
& f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right) \text {, }
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right),
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
(f \circ \gamma)_{u}\left(u_{0}, v_{0}\right)
$$

$$
=f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right)
$$

$$
+f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a γ

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right) \text {, }
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right),
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta)$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right) \text {, }
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right),
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right) \text {, }
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right),
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
(f \circ \gamma)_{u}\left(u_{0}, v_{0}\right)
$$

$$
=f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right)
$$

$$
+f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve.

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v},
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right) \text {, }
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right),
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve. $\sigma: U \rightarrow S$ a surface patch.

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v},
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right),
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve.
$\sigma: U \rightarrow S$ a surface patch.
So, $\gamma(t)=\sigma(x(t), y(t))$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v},
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right),
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve.
$\sigma: U \rightarrow S$ a surface patch.
So, $\gamma(t)=\sigma(x(t), y(t))=p \in S$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve.
$\sigma: U \rightarrow S$ a surface patch.
So, $\gamma(t)=\sigma(x(t), y(t))=p \in S$

$$
\dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(x(t), y(t))+y^{\prime}(t) \sigma_{y}(x(t), y(t))
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Chain rule for mult-variable functions

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=(x(t), y(t)) \\
& f \circ \gamma:(\alpha, \beta) \rightarrow \mathbb{R}
\end{aligned}
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve.
$\sigma: U \rightarrow S$ a surface patch.
So, $\gamma(t)=\sigma(x(t), y(t))=p \in S$

$$
\dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(x(t), y(t))+y^{\prime}(t) \sigma_{y}(x(t), y(t))
$$

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Chain rule for mult-variable functions

```
f:\mp@subsup{\mathbb{R}}{}{2}->\mathbb{R}
\gamma:(\alpha,\beta)->\mp@subsup{\mathbb{R}}{}{2}
\gamma}(t)=(x(t),y(t)
f\circ\gamma:(\alpha,\beta)->\mathbb{R}
```

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
& (f \circ \gamma)_{u}\left(u_{0}, v_{0}\right) \\
& =f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right) \\
& +f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
\end{aligned}
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve.
$\sigma: U \rightarrow S$ a surface patch.
So, $\gamma(t)=\sigma(x(t), y(t))=p \in S$

$$
\dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(p)+y^{\prime}(t) \sigma_{y}(p)
$$

The tangent vectors at $p \in S \subset \mathbb{R}^{3}$ always belong to the span of $\sigma_{x}(p)$ and $\sigma_{y}(p)$.

Exercise. Show that any vector that belongs to the span of $\sigma_{x}(p)$ and $\sigma_{y}(p)$, is a tangent vector.

Chain rule for mult-variable functions

```
f:\mp@subsup{\mathbb{R}}{}{2}->\mathbb{R}
\gamma:(\alpha,\beta)->\mp@subsup{\mathbb{R}}{}{2}
\gamma}(t)=(x(t),y(t)
f\circ\gamma:(\alpha,\beta)->\mathbb{R}
```

$$
f_{\mathbf{v}}\left(x\left(t_{0}\right), y\left(t_{0}\right)\right):=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\nabla(f)(p) \cdot \mathbf{v}
$$

$$
\text { where } \nabla(f)(x, y)=\left(f_{x}(x, y) \cdot f_{y}(x, y)\right)
$$

$$
\mathbf{v}=\dot{\gamma}\left(t_{0}\right)
$$

$$
\text { and } p=\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

$$
\gamma(u, v)=(x(u, v), y(u, v))
$$

$$
f \circ \gamma: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
(f \circ \gamma)_{u}\left(u_{0}, v_{0}\right)
$$

$$
=f_{x}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) x_{u}\left(u_{0}, v_{0}\right)
$$

$$
+f_{y}\left(x\left(u_{0}, v_{0}\right), y\left(u_{0}, v_{0}\right)\right) y_{u}\left(u_{0}, v_{0}\right)
$$

Curves on surfaces

Definition. $\mathbf{v} \in \mathbb{R}^{3}$ is a tangent vector of the surface S at a point p, if there is a $\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ so that $p=\gamma(t)$ and $\mathbf{v}=\dot{\gamma}(t)$
$\gamma:(\alpha, \beta) \rightarrow S \subset \mathbb{R}^{3}$ is a curve.
$\sigma: U \rightarrow S$ a surface patch.
So, $\gamma(t)=\sigma(x(t), y(t))=p \in S$

$$
\dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(p)+y^{\prime}(t) \sigma_{y}(p)
$$

The tangent vectors at $p \in S \subset \mathbb{R}^{3}$ always belong to the span of $\sigma_{x}(p)$ and $\sigma_{y}(p)$.

Exercise. Show that any vector that belongs to the span of $\sigma_{x}(p)$ and $\sigma_{y}(p)$, is a tangent vector.

Exercise. Show that σ is regular at p if and only if the tangent vectors at p form a two dimensional subspace of \mathbb{R}^{3}.

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".
 $S \subset \mathbb{R}^{3}$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$U \rightarrow S \subset \mathbb{R}^{3}$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
U \rightarrow S \subset \mathbb{R}^{3}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\sigma: U \rightarrow S \subset \mathbb{R}^{3}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow S
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow S
\end{aligned}
$$

parametrized by γ

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".
$\sigma: U \rightarrow S \subset \mathbb{R}^{3}$
$\gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S
\end{aligned}
$$

But it is also a curve in space

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S
\end{aligned}
$$

that happens to lie on a surface.

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".
$\sigma: U \rightarrow S \subset \mathbb{R}^{3}$
$\gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3}$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".
$\sigma: U \rightarrow S \subset \mathbb{R}^{3}$
$\gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3}$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U
\end{aligned}
$$

But to each $\gamma(t) \in \sigma(U), \sigma$ corresponds a $\delta(t) \in U$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".
$\sigma: U \rightarrow S \subset \mathbb{R}^{3}$
$\gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3}$
$\delta:(\alpha, \beta) \rightarrow U$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\sigma: U \rightarrow S \subset \mathbb{R}^{3}
$$

$$
\gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3}
$$

$$
\delta:(\alpha, \beta) \rightarrow U
$$

$$
\gamma(t)=\sigma(\delta(t))
$$

$$
\delta(t)=(x(t), y(t))
$$

$$
\dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
$$

Essentially, $\dot{\gamma}(t)$ can be written in terms of the surface patch, specifically, σ_{x} and σ_{y}.

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

The coefficients come from $\dot{\delta}(t)$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

A curve on a surface

Note:: This was not part of the lecture, however, since there seemed to be some confusion, this adds a diagram to support along with "subtitles".

$$
\begin{aligned}
& \sigma: U \rightarrow S \subset \mathbb{R}^{3} \\
& \gamma:(\alpha, \beta) \rightarrow \sigma(U) \subset S \subset \mathbb{R}^{3} \\
& \delta:(\alpha, \beta) \rightarrow U \\
& \gamma(t)=\sigma(\delta(t)) \\
& \delta(t)=(x(t), y(t)) \\
& \dot{\gamma}(t)=x^{\prime}(t) \sigma_{x}(\delta(t))+y^{\prime}(t) \sigma_{y}(\delta(t))
\end{aligned}
$$

