Example. $(x, y) \in \mathbb{R}^{2}$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$

Recall

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) .(1,0)$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$

Recall

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,
$\mathbf{v}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,
$\mathbf{v}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}$
for some $\alpha, \beta \in \mathbb{R}$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,
$\mathbf{v}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}$
for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,
$\mathbf{v}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}$
for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients α, β :

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,
$\mathbf{v}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}$
for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients α, β :
$\alpha=\mathbf{v} . \mathbf{e}_{1}$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,
$\mathbf{v}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}$
for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients α, β :

$$
\begin{aligned}
& \alpha=\mathbf{v} . \mathbf{e}_{1} \\
& \beta=\mathbf{v} . \mathbf{e}_{2}
\end{aligned}
$$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}\right\|=1,\left\|\mathbf{e}_{2}\right\|=1$, and $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$
" \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis"
For any, $\mathbf{v} \in \mathbb{R}^{2}$,
$\mathbf{v}=\alpha \mathbf{e}_{1}+\beta \mathbf{e}_{2}$
for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients α, β :

$$
\begin{aligned}
& \alpha=\mathbf{v} . \mathbf{e}_{1} \\
& \beta=\mathbf{v} . \mathbf{e}_{2}
\end{aligned}
$$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$
" $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)$
$\beta(t)=\mathbf{v}(t) . \mathbf{e}_{2}(t)$

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$
" $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So,

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$
" $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$
" $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth \Longrightarrow

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$
" $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

Recall,

Example. $(x, y) \in \mathbb{R}^{2}$
$(x, y)=x(1,0)+y(0,1)$
Observe, $\|(1,0)\|=1,\|(0,1)\|=1$, and $(1,0) \cdot(0,1)=0$
$x=(x, y) \cdot(1,0)$ and $y=(x, y) \cdot(0,1)$
Nothing special about $(1,0)$ and $(0,1)$,
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$
" $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)
Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\begin{aligned}
& \mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2} \\
& \left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1, \text { and } \mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0 \\
& " \mathbf{e}_{1}(t) \text { and } \mathbf{e}_{2}(t) \text { form an orthonormal basis" }
\end{aligned}
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\begin{aligned}
& \mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2} \\
& \left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1, \text { and } \mathbf{e}_{1}(t) . \mathbf{e}_{2}(t)=0 \\
& " \mathbf{e}_{1}(t) \text { and } \mathbf{e}_{2}(t) \text { form an orthonormal basis" }
\end{aligned}
$$

$$
\{\mathbf{T}(t),\}
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\begin{aligned}
& \mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2} \\
& \left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1, \text { and } \mathbf{e}_{1}(t) . \mathbf{e}_{2}(t)=0 \\
& " \mathbf{e}_{1}(t) \text { and } \mathbf{e}_{2}(t) \text { form an orthonormal basis" }
\end{aligned}
$$

$$
\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\begin{aligned}
& \mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2} \\
& \left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1, \text { and } \mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0 \\
& " \mathbf{e}_{1}(t) \text { and } \mathbf{e}_{2}(t) \text { form an orthonormal basis" }
\end{aligned}
$$

$$
\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\} \text { form an orthonormal basis, }
$$

```
For any, \(\mathbf{v}(t) \in \mathbb{R}^{2}\),
\(\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)\)
for some \(\alpha(t), \beta(t) \in \mathbb{R}\) (uniquely represented like this!)
```

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}
$$

$$
\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\} \text { form an orthonormal basis, for each } t \text {. }
$$

$$
\text { For any, } \mathbf{v}(t) \in \mathbb{R}^{2}
$$

$$
\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)
$$

$$
\text { for some } \alpha(t), \beta(t) \in \mathbb{R} \text { (uniquely represented like this!) }
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\begin{aligned}
& \mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2} \\
& \left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1, \text { and } \mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0 \\
& " \mathbf{e}_{1}(t) \text { and } \mathbf{e}_{2}(t) \text { form an orthonormal basis" }
\end{aligned}
$$

$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t)
$$

```
For any, \(\mathbf{v}(t) \in \mathbb{R}^{2}\),
\(\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)\)
for some \(\alpha(t), \beta(t) \in \mathbb{R}\) (uniquely represented like this!)
```

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\begin{aligned}
& \mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2} \\
& \left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1, \text { and } \mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0 \\
& " \mathbf{e}_{1}(t) \text { and } \mathbf{e}_{2}(t) \text { form an orthonormal basis" }
\end{aligned}
$$

$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,

$$
\dot{\mathbf{T}}(t)=\kappa_{s}(t) \mathbf{N}_{s}(t)
$$

$$
\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)
$$

$$
\text { for some } \alpha(t), \beta(t) \in \mathbb{R} \text { (uniquely represented like this!) }
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,

$$
\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t)
$$

$$
\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)
$$

$$
\text { for some } \alpha(t), \beta(t) \in \mathbb{R} \text { (uniquely represented like this!) }
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$, $\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+? ? \mathbf{N}_{s}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$, $\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+? ? \mathbf{N}_{s}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$, $\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+0 \mathbf{N}_{s}(t)
\end{aligned}
$$

$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$, $\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+0 \mathbf{N}_{s}(t)
\end{aligned}
$$

$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

$$
\dot{\mathbf{N}}_{s}(t) \cdot \mathbf{T}(t)
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$, $\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+0 \mathbf{N}_{s}(t)
\end{aligned}
$$

$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

$$
\dot{\mathbf{N}}_{s}(t) . \mathbf{T}(t)+\mathbf{N}_{s}(t) . \dot{\mathbf{T}}(t)
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$, $\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+0 \mathbf{N}_{s}(t)
\end{aligned}
$$

$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.
+

$$
\dot{\mathbf{N}}_{s}(t) \cdot \mathbf{T}(t)+\mathbf{N}_{s}(t) \cdot \dot{\mathbf{T}}(t)=\left(\mathbf{N}_{s}(t) \cdot \mathbf{T}(t)\right)^{\prime}
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
\end{aligned}
$$

$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t)
$$

$$
\mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+0 \mathbf{N}_{s}(t)
\end{aligned}
$$

$$
\dot{\mathbf{N}}_{s}(t) \cdot \mathbf{T}(t)+\mathbf{N}_{s}(t) \cdot \dot{\mathbf{T}}(t)=\underbrace{\left(\mathbf{N}_{s}(t) \cdot \mathbf{T}(t)\right)^{\prime}}_{0}
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t)
$$

$$
\mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$, $\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=? ? \mathbf{T}(t)+0 \mathbf{N}_{s}(t)
\end{aligned}
$$

$$
\dot{\mathbf{N}}_{s}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}_{s}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa_{s}(t)}=\underbrace{\left(\mathbf{N}_{s}(t) \cdot \mathbf{T}(t)\right)^{\prime}}_{0}
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.
$\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$
$\left\|\mathbf{e}_{1}(t)\right\|=1,\left\|\mathbf{e}_{2}(t)\right\|=1$, and $\mathbf{e}_{1}(t) \cdot \mathbf{e}_{2}(t)=0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"
$\left\{\mathbf{T}(t), \mathbf{N}_{s}(t)\right\}$ form an orthonormal basis, for each t.

$$
\mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t)+\beta(t)^{\prime} \mathbf{N}_{s}(t)+\beta(t) \mathbf{N}_{s}^{\prime}(t)
$$

For any, $\mathbf{v}(t) \in \mathbb{R}^{2}$,
$\mathbf{v}(t)=\alpha(t) \mathbf{e}_{1}(t)+\beta(t) \mathbf{e}_{2}(t)$
for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha(t) \mathbf{T}(t)+\beta(t) \mathbf{N}_{s}(t) \\
& \mathbf{v}^{\prime}(t)=\alpha(t)^{\prime} \mathbf{T}(t)+\alpha(t) \mathbf{T}^{\prime}(t) \\
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa_{s}(t) \mathbf{N}_{s}(t) \\
& \dot{\mathbf{N}}_{s}(t)=-\kappa_{s}(t) \mathbf{T}(t)+0 \mathbf{N}_{s}(t)
\end{aligned}
$$

$$
\dot{\mathbf{N}}_{s}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}_{s}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa_{s}(t)}=\underbrace{\left(\mathbf{N}_{s}(t) \cdot \mathbf{T}(t)\right)^{\prime}}_{0}
$$

Recovering the coefficients $\alpha(t), \beta(t)$:
$\alpha(t)=\mathbf{v}(t) \cdot \mathbf{e}_{1}(t)$
$\beta(t)=\mathbf{v}(t) \cdot \mathbf{e}_{2}(t)$
So, $\mathbf{v}(t), \mathbf{e}_{1}(t), \mathbf{e}_{2}(t)$ smooth $\Longrightarrow \alpha(t), \beta(t)$ smooth.

Exercise. If $\gamma:(\alpha, \beta)$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature,

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true,

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown)

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed

 parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed

 parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,
p

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words,

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t)
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=
$$

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=\dot{\gamma}(t)+1 / \kappa \dot{\mathbf{N}}(t)
$$

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

$$
\begin{aligned}
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime} & =\dot{\gamma}(t)+1 / \kappa \dot{\mathbf{N}}(t) \\
& =\mathbf{T}(t)-(1 / \kappa) \kappa \mathbf{T}(t)
\end{aligned}
$$

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.

$$
\begin{aligned}
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime} & =\dot{\gamma}(t)+1 / \kappa \dot{\mathbf{N}}(t) \\
& =\mathbf{T}(t)-(1 / \kappa) \kappa \mathbf{T}(t) \\
& =0
\end{aligned}
$$

If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

Exercise. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a unit speed parametrization with constant (non-zero) curvature, then show that $\gamma(t)$ lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would satisfy,

$$
p-\gamma(t)=1 / \kappa \mathbf{N}(t)
$$

In other words, p is that constant, such that,

$$
p=1 / \kappa \mathbf{N}(t)+\gamma(t)
$$

It exists if,

$$
(\gamma(t)+1 / \kappa \mathbf{N}(t))^{\prime}=0
$$

