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.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t)+??Ns(t)
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t)+??Ns(t)
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t) + 0Ns(t)
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t) + 0Ns(t)

.
Ns(t).T(t)
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t) + 0Ns(t)

.
Ns(t).T(t) + Ns(t).

.
T(t)
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t) + 0Ns(t)

.
Ns(t).T(t) + Ns(t).

.
T(t) = (Ns(t).T(t))′
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t) + 0Ns(t)

.
Ns(t).T(t) + Ns(t).

.
T(t) = (Ns(t).T(t))′︸ ︷︷ ︸

0
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) =??T(t) + 0Ns(t)

.
Ns(t).T(t) + Ns(t).

.
T(t)︸ ︷︷ ︸

κs(t)

= (Ns(t).T(t))′︸ ︷︷ ︸
0
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e1(t), e2(t) ∈ R2

‖e1(t)‖ = 1, ‖e2(t)‖ = 1, and e1(t).e2(t) = 0
“e1(t) and e2(t) form an orthonormal basis”

For any, v(t) ∈ R2,
v(t) = α(t)e1(t) + β(t)e2(t)
for some α(t), β(t) ∈ R (uniquely represented like this!)

Recovering the coefficients α(t), β(t):
α(t) = v(t).e1(t)
β(t) = v(t).e2(t)
So, v(t), e1(t), e2(t) smooth =⇒ α(t), β(t) smooth.

{T(t),Ns(t)} form an orthonormal basis, for each t.

v(t) = α(t)T(t) + β(t)Ns(t)
v′(t) = α(t)′T(t) + α(t)T′(t) + β(t)′Ns(t) + β(t)N′s(t)

.
T(t) = 0T(t) + κs(t)Ns(t).
Ns(t) = −κs(t)T(t) + 0Ns(t)

.
Ns(t).T(t) + Ns(t).

.
T(t)︸ ︷︷ ︸

κs(t)

= (Ns(t).T(t))′︸ ︷︷ ︸
0
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Exercise. If γ
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Exercise. If γ : (α, β)
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Exercise. If γ : (α, β)→ R2
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true,
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κ
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words,
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p

68



Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

70



Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p =
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,

γ(t) + 1/κN(t)
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,

γ(t) + 1/κN(t) = p
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,

γ(t) + 1/κN(t) = p

for some constant p
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,

γ(t) + 1/κN(t) = p

for some constant p and,
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,

γ(t) + 1/κN(t) = p

for some constant p and,

‖γ(t)− p‖

88



Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,

γ(t) + 1/κN(t) = p

for some constant p and,

‖γ(t)− p‖ = |1/κ|
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Exercise. If γ : (α, β) → R2 is a unit speed
parametrization with constant (non-zero) curvature,
then show that γ(t) lies on a circle for every t.

Solution. Let the curvature be κ.
If it were true, then the (as yet, unknown) center p, would
satisfy,

p− γ(t) = 1/κN(t)

In other words, p is that constant, such that,

p = 1/κN(t) + γ(t)

It exists if,

(γ(t) + 1/κN(t))′ = 0

(γ(t) + 1/κN(t))′ =
.
γ(t) + 1/κ

.
N(t)

= T(t)− (1/κ)κT(t)

= 0

Therefore,

γ(t) + 1/κN(t) = p

for some constant p and,

‖γ(t)− p‖ = |1/κ|‖N(t)‖ = 1/κ
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