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Recovering the coefficients «/(t), B(¢):
at) = v(t).e(t)

B(t) = v(t).ext)
So, v(t),eq(t), es(t) smooth = «f(t), B(t) smooth.
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ler(®)]| = 1, [[ex(t)]| = 1, and e (t).ex(t) = 0 v(t) = a(t)T(t) + B(t)N,(?)
“e1(t) and ey(t) form an orthonormal basis” V(1) = a(t)T(t) + at)T'(t) + B(t)N(t) + B(t)N.(1)
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v(t) = at)ei(t) + B(t)ex(?)

for some a(t), B(t) € R (uniquely represented like this!) N (¢

Recovering the coefficients «/(t), B(¢):
at) = v(t).e(t)

B(t) = v(t).ext)
So, v(t),eq(t), es(t) smooth = «f(t), B(t) smooth.



ei(t), ex(t) € R? {T(t),Ng(t)} form an orthonormal basis, for each .
ler(®)]| = 1, [[ex(t)]| = 1, and e (t).ex(t) = 0 v(t) = a(t)T(t) + B(t)N,(?)
“e1(t) and ey(t) form an orthonormal basis” V(1) = a(t)T(t) + at)T'(t) + B(t)N(t) + B(t)N.(1)

For any, v(t) € R?, N, (t) =?7T(t) + ON,(t)
v(t) = a(t)ei(t) + B(t)ea(t)

for some a(t), B(t) € R (uniquely represented like this!) N (¢

Recovering the coefficients «/(t), B(¢):
at) = v(t).e(t)

B(t) = v(t).ext)
So, v(t),eq(t), es(t) smooth = «f(t), B(t) smooth.



ei(t), ex(t) € R? {T(t),Ng(t)} form an orthonormal basis, for each .
ler(®)]| = 1, [[ex(t)]| = 1, and e (t).ex(t) = 0 v(t) = a(t)T(t) + B(t)N,(?)
“e1(t) and ey(t) form an orthonormal basis” V(1) = a(t)T(t) + at)T'(t) + B(t)N(t) + B(t)N.(1)

T(t) = 0T(t) + r(t)N,(t)
For any, v(t) € R?, N, (t) = —#ry(t)T(t) + ON,(2)
v(t) = a(t)ei(t) + B(t)ea(t)

for some a(t), B(t) € R (uniquely represented like this!) N (¢

Recovering the coefficients «/(t), B(¢):
at) = v(t).e(t)

B(t) = v(t).ext)
So, v(t),eq(t), es(t) smooth = «f(t), B(t) smooth.
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Solution. Let the curvature be k.
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then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
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then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
satisty,

p—(t) =1/&N(t)
In other words, p is that constant, such that,
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then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
satisty,

p—(t) =1/&N(t)
In other words, p is that constant, such that,

p=1/kN(t) + ()



Exercise. If v : (a,8) — R? is a unit speed
parametrization with constant (non-zero) curvature,
then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
satisty,

p—(t) =1/&N(t)
In other words, p is that constant, such that,
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[t exists if, ]
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parametrization with constant (non-zero) curvature,
then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
satisty,

p—(t) =1/&N(t)
In other words, p is that constant, such that,
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Solution. Let the curvature be k.
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In other words, p is that constant, such that,
p=1/&N(t) +~(t)
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Exercise. If v : (a,8) — R? is a unit speed
parametrization with constant (non-zero) curvature,
then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
satisty,

p—(t) =1/&N(t)
In other words, p is that constant, such that,
p=1/&N(t) +~(t)

[t exists if,

(v(t) +1/6N(t))" = 0

(v(t) + 1/6N(t))" = (1) + 1/kN(t)



Exercise. If v : (a,8) — R? is a unit speed
parametrization with constant (non-zero) curvature,
then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
satisty,

p—(t) =1/&N(t)
In other words, p is that constant, such that,
p=1/&N(t) +~(t)

[t exists if,

(v(t) +1/6N(t))" = 0

(v(t) +1/6N(2))

A(t) + 1/kN(t)
T(t) — (1/k)kT(t)
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then show that «(¢) lies on a circle for every t.

Solution. Let the curvature be k.
If it were true, then the (as yet, unknown) center p, would
satisty,

p—(t) =1/&N(t)
In other words, p is that constant, such that,
p=1/&N(t) +~(t)

[t exists if,
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[t exists if,

(v(t) +1/6N(t))" = 0
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then show that «(¢) lies on a circle for every t. ((t) + 1/6N(#)) = (t) + 1/kN(t)
= T(t) — (1/k)kT(t)
Solution. Let the curvature be k. — 0
If it were true, then the (as yet, unknown) center p, would
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p—(t)=1/kN(t) ) + /RN (Y

In other words, p is that constant, such that,
p=1/&N(t) +~(t)

[t exists if,

(v(t) +1/6N(t))" = 0



Exercise. If v : (a,8) — R? is a unit speed
parametrization with constant (non-zero) curvature,

then show that «(¢) lies on a circle for every t. ((t) + 1/6N(#)) = (t) + 1/kN(t)
= T(t) — (1/k)kT(t)
Solution. Let the curvature be k. — 0
If it were true, then the (as yet, unknown) center p, would
satisty Therefore,

p—(t) =1/kN(1) 6) + 1/aN(E) = p

In other words, p is that constant, such that,
p=1/&N(t) +~(t)

[t exists if,

(v(t) +1/6N(t))" = 0
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= T(t) — (1/k)kT(t)
Solution. Let the curvature be k. — 0
If it were true, then the (as yet, unknown) center p, would
satisty Therefore,

— ~(t) = 1/kIN(t
p—(t)=1/kN(t) 6) + 1/aN(E) = p

In other words, p is that constant, such that, for some constant p
p=1/kN(t) + (1)

[t exists if,

(v(t) +1/6N(t))" = 0
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then show that «(¢) lies on a circle for every t. ((t) + 1/6N(#)) = (t) + 1/kN(t)
= T(t) — (1/k)kT(t)
Solution. Let the curvature be k. — 0
If it were true, then the (as yet, unknown) center p, would
satisty Therefore,

— ~(t) = 1/kIN(t
p—(t)=1/kN(t) 6) + 1/aN(E) = p

In other words, p is that constant, such that, for some constant p and,
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[t exists if,
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Exercise. If v : (a,8) — R? is a unit speed
parametrization with constant (non-zero) curvature,

then show that «(¢) lies on a circle for every t. ((t) + 1/6N(#)) = (t) + 1/kN(t)
= T(t) — (1/k)kT(t)
Solution. Let the curvature be k. — 0
If it were true, then the (as yet, unknown) center p, would
satisty Therefore,

— ~(t) = 1/kIN(t
p—(t)=1/kN(t) 6) + 1/aN(E) = p

In other words, p is that constant, such that, for some constant p and,
p=1/kN(t) + (1) 7€) = pll = [1/6[IN@)|| = 1/
[t exists if,

(v(t) +1/6N(t))" = 0



