Example. $(x, y) \in \mathbb{R}^2$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x =

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0)

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y =

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

```
Nothing special about (1, 0) and (0, 1),

\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
```

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2$ $\|\mathbf{e}_1\| = 1$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2$ $\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

```
Nothing special about (1, 0) and (0, 1),
```

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
```

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

```
Nothing special about (1, 0) and (0, 1),
```

 $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2$ $\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0$ " \mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

```
Nothing special about (1, 0) and (0, 1),
```

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
"\mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"
```

For any, $\mathbf{v} \in \mathbb{R}^2$,

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1,0) and (0,1),

 $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}\| = 1, \|\mathbf{e}_{2}\| = 1, \text{ and } \mathbf{e}_{1}.\mathbf{e}_{2} = 0$ " \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis" For any, $\mathbf{v} \in \mathbb{R}^{2}$,

 \mathbf{V}

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

```
Nothing special about (1, 0) and (0, 1),
```

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
"\mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"
For any, \mathbf{v} \in \mathbb{R}^2,
```

 $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

```
Nothing special about (1, 0) and (0, 1),
```

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
"\mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"
For any, \mathbf{v} \in \mathbb{R}^2,
```

 $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2$
for some $\alpha, \beta \in \mathbb{R}$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_{1}, \mathbf{e}_{2} \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}\| = 1, \|\mathbf{e}_{2}\| = 1, \text{ and } \mathbf{e}_{1}.\mathbf{e}_{2} = 0$ " \mathbf{e}_{1} and \mathbf{e}_{2} form an orthonormal basis" For any, $\mathbf{v} \in \mathbb{R}^{2}$, $\mathbf{v} = \alpha \mathbf{e}_{1} + \beta \mathbf{e}_{2}$

for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
"\mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"
```

For any, $\mathbf{v} \in \mathbb{R}^2$, $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2$ for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients α, β :

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
"\mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"
```

For any, $\mathbf{v} \in \mathbb{R}^2$, $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2$ for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!) Recovering the coefficients α, β :

 $\alpha = \mathbf{v}.\mathbf{e}_1$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
"\mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"
```

For any, $\mathbf{v} \in \mathbb{R}^2$, $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2$ for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients α, β :

 $\alpha = \mathbf{v}.\mathbf{e}_1$ $\beta = \mathbf{v}.\mathbf{e}_2$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

```
\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2
\|\mathbf{e}_1\| = 1, \|\mathbf{e}_2\| = 1, \text{ and } \mathbf{e}_1.\mathbf{e}_2 = 0
"\mathbf{e}_1 and \mathbf{e}_2 form an orthonormal basis"
```

For any, $\mathbf{v} \in \mathbb{R}^2$, $\mathbf{v} = \alpha \mathbf{e}_1 + \beta \mathbf{e}_2$ for some $\alpha, \beta \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients α, β :

 $\alpha = \mathbf{v}.\mathbf{e}_1$ $\beta = \mathbf{v}.\mathbf{e}_2$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$: $\alpha(t) = \mathbf{v}(t).\mathbf{e}_1(t)$ $\beta(t) = \mathbf{v}(t).\mathbf{e}_2(t)$

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$: $\alpha(t) = \mathbf{v}(t).\mathbf{e}_1(t)$ $\beta(t) = \mathbf{v}(t).\mathbf{e}_2(t)$ So,

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Example. $(x, y) \in \mathbb{R}^2$ (x, y) = x(1, 0) + y(0, 1)Observe, ||(1, 0)|| = 1, ||(0, 1)|| = 1, and (1, 0).(0, 1) = 0x = (x, y).(1, 0) and y = (x, y).(0, 1)

Nothing special about (1, 0) and (0, 1),

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

 $\mathbf{e}_1(t), \mathbf{e}_2(t) \in \mathbb{R}^2$ $\|\mathbf{e}_1(t)\| = 1, \|\mathbf{e}_2(t)\| = 1, \text{ and } \mathbf{e}_1(t).\mathbf{e}_2(t) = 0$ " $\mathbf{e}_1(t)$ and $\mathbf{e}_2(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

 $\mathbf{e}_1(t), \mathbf{e}_2(t) \in \mathbb{R}^2$ $\|\mathbf{e}_1(t)\| = 1, \|\mathbf{e}_2(t)\| = 1, \text{ and } \mathbf{e}_1(t).\mathbf{e}_2(t) = 0$ " $\mathbf{e}_1(t)$ and $\mathbf{e}_2(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

$$\{{\bf T}(t),\}$$

 $\mathbf{e}_1(t), \mathbf{e}_2(t) \in \mathbb{R}^2$ $\|\mathbf{e}_1(t)\| = 1, \|\mathbf{e}_2(t)\| = 1, \text{ and } \mathbf{e}_1(t).\mathbf{e}_2(t) = 0$ " $\mathbf{e}_1(t)$ and $\mathbf{e}_2(t)$ form an orthonormal basis"

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$: $\alpha(t) = \mathbf{v}(t).\mathbf{e}_1(t)$ $\beta(t) = \mathbf{v}(t).\mathbf{e}_2(t)$ So, $\mathbf{v}(t), \mathbf{e}_1(t), \mathbf{e}_2(t)$ smooth $\implies \alpha(t), \beta(t)$ smooth. $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis,

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis"

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$: $\alpha(t) = \mathbf{v}(t).\mathbf{e}_1(t)$ $\beta(t) = \mathbf{v}(t).\mathbf{e}_2(t)$ So, $\mathbf{v}(t), \mathbf{e}_1(t), \mathbf{e}_2(t)$ smooth $\implies \alpha(t), \beta(t)$ smooth. $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis, for each t.

 $\mathbf{e}_{1}(t), \mathbf{e}_{2}(t) \in \mathbb{R}^{2}$ $\|\mathbf{e}_{1}(t)\| = 1, \|\mathbf{e}_{2}(t)\| = 1, \text{ and } \mathbf{e}_{1}(t).\mathbf{e}_{2}(t) = 0$ " $\mathbf{e}_{1}(t)$ and $\mathbf{e}_{2}(t)$ form an orthonormal basis" $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis, for each t. $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)
$\{\mathbf{T}(t), \mathbf{N}_s(t)\} \text{ form an orthonormal basis, for each } t.$ $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\} \text{ form an orthonormal basis, for each } t.$ $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

 $\dot{\mathbf{T}}(t) = \kappa_s(t) \mathbf{N}_s(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\} \text{ form an orthonormal basis, for each } t.$ $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

 $\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$: $\alpha(t) = \mathbf{v}(t).\mathbf{e}_1(t)$ $\beta(t) = \mathbf{v}(t).\mathbf{e}_2(t)$ So, $\mathbf{v}(t), \mathbf{e}_1(t), \mathbf{e}_2(t)$ smooth $\implies \alpha(t), \beta(t)$ smooth.

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\} \text{ form an orthonormal basis, for each } t.$ $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

 $\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$ $\dot{\mathbf{N}}_s(t) = ??\mathbf{T}(t) + ??\mathbf{N}_s(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

Recovering the coefficients $\alpha(t), \beta(t)$: $\alpha(t) = \mathbf{v}(t).\mathbf{e}_1(t)$ $\beta(t) = \mathbf{v}(t).\mathbf{e}_2(t)$ So, $\mathbf{v}(t), \mathbf{e}_1(t), \mathbf{e}_2(t)$ smooth $\implies \alpha(t), \beta(t)$ smooth.

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\} \text{ form an orthonormal basis, for each } t.$ $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

 $\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$ $\dot{\mathbf{N}}_s(t) = ??\mathbf{T}(t) + ??\mathbf{N}_s(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!)

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\} \text{ form an orthonormal basis, for each } t.$ $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

 $\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$ $\dot{\mathbf{N}}_s(t) = ??\mathbf{T}(t) + 0\mathbf{N}_s(t)$

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\} \text{ form an orthonormal basis, for each } t.$ $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

 $\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$ $\dot{\mathbf{N}}_s(t) = ??\mathbf{T}(t) + 0\mathbf{N}_s(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!) $\dot{\mathbf{N}}_s(t).\mathbf{T}(t)$

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis, for each t. $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

 $\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$ $\dot{\mathbf{N}}_{s}(t) = ??\mathbf{T}(t) + 0\mathbf{N}_{s}(t)$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!) $\dot{\mathbf{N}}_{s}(t).\mathbf{T}(t) + \mathbf{N}_{s}(t).\dot{\mathbf{T}}(t)$

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis, for each t. $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

$$\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$$
$$\dot{\mathbf{N}}_s(t) = ??\mathbf{T}(t) + 0\mathbf{N}_s(t)$$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!) $\dot{\mathbf{N}}_{s}(t).\mathbf{T}(t) + \mathbf{N}_{s}(t).\dot{\mathbf{T}}(t) = (\mathbf{N}_{s}(t).\mathbf{T}(t))'$

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis, for each t. $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

$$\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$$
$$\dot{\mathbf{N}}_s(t) = ??\mathbf{T}(t) + 0\mathbf{N}_s(t)$$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!) $\dot{\mathbf{N}}_{s}(t).\mathbf{T}(t) + \mathbf{N}_{s}(t).\dot{\mathbf{T}}(t) = \underbrace{(\mathbf{N}_{s}(t).\mathbf{T}(t))'}_{\circ}$

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis, for each t. $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

$$\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$$
$$\dot{\mathbf{N}}_s(t) = ??\mathbf{T}(t) + 0\mathbf{N}_s(t)$$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!) $\dot{\mathbf{N}}_{s}(t).\mathbf{T}(t) + \underbrace{\mathbf{N}_{s}(t).\dot{\mathbf{T}}(t)}_{\kappa_{s}(t)} = \underbrace{(\mathbf{N}_{s}(t).\mathbf{T}(t))'}_{0}$

 $\{\mathbf{T}(t), \mathbf{N}_s(t)\}\$ form an orthonormal basis, for each t. $\mathbf{v}(t) = \alpha(t)\mathbf{T}(t) + \beta(t)\mathbf{N}_s(t)$ $\mathbf{v}'(t) = \alpha(t)'\mathbf{T}(t) + \alpha(t)\mathbf{T}'(t) + \beta(t)'\mathbf{N}_s(t) + \beta(t)\mathbf{N}'_s(t)$

$$\dot{\mathbf{T}}(t) = 0\mathbf{T}(t) + \kappa_s(t)\mathbf{N}_s(t)$$

$$\dot{\mathbf{N}}_s(t) = -\kappa_s(t)\mathbf{T}(t) + 0\mathbf{N}_s(t)$$

For any, $\mathbf{v}(t) \in \mathbb{R}^2$, $\mathbf{v}(t) = \alpha(t)\mathbf{e}_1(t) + \beta(t)\mathbf{e}_2(t)$ for some $\alpha(t), \beta(t) \in \mathbb{R}$ (uniquely represented like this!) $\dot{\mathbf{N}}_{s}(t).\mathbf{T}(t) + \underbrace{\mathbf{N}_{s}(t).\dot{\mathbf{T}}(t)}_{\kappa_{s}(t)} = \underbrace{(\mathbf{N}_{s}(t).\mathbf{T}(t))'}_{0}$

Exercise. If γ

Exercise. If $\gamma : (\alpha, \beta)$

Exercise. If $\gamma : (\alpha, \beta) \to \mathbb{R}^2$

Exercise. If $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization

Exercise. If $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization with constant (non-zero) curvature,

Exercise. If $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a unit speed parametrization with constant (non-zero) curvature, then show that

Solution. Let the curvature be κ .

Solution. Let the curvature be κ . If it were true,

Solution. Let the curvature be κ . If it were true, then the

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown)

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p \Box

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

p

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t)$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p-\gamma(t)=1/\kappa$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that constant

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

p =

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p=1/\kappa \mathbf{N}(t)$
Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t)$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t)$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

$$(\gamma(t) + 1/\kappa \mathbf{N}(t))' =$$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

$$(\gamma(t) + 1/\kappa \mathbf{N}(t))' = \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t)$$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

$$(\gamma(t) + 1/\kappa \mathbf{N}(t))' = \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t)$$

= $\mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t)$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

$$\begin{aligned} (\gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\gamma(t) + 1/\kappa \mathbf{N}(t))' = \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t)$$

= $\mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t)$
= 0

Therefore,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\begin{aligned} (\gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Therefore,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\begin{aligned} (\gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Therefore,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\begin{aligned} \gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Therefore,

 $\gamma(t) + 1/\kappa \mathbf{N}(t) = p$

for some constant p

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\begin{aligned} \gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Therefore,

 $\gamma(t) + 1/\kappa \mathbf{N}(t) = p$

for some constant p and,

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\begin{aligned} \gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Therefore,

 $\gamma(t) + 1/\kappa \mathbf{N}(t) = p$

for some constant p and,

 $\|\gamma(t) - p\|$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\begin{aligned} \gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Therefore,

 $\gamma(t) + 1/\kappa \mathbf{N}(t) = p$

for some constant p and,

 $\|\gamma(t) - p\| = |1/\kappa|$

Solution. Let the curvature be κ . If it were true, then the (as yet, unknown) center p, would satisfy,

 $p - \gamma(t) = 1/\kappa \mathbf{N}(t)$

In other words, p is that *constant*, such that,

 $p = 1/\kappa \mathbf{N}(t) + \gamma(t)$

It exists if,

 $(\gamma(t) + 1/\kappa \mathbf{N}(t))' = 0$

$$\begin{aligned} (\gamma(t) + 1/\kappa \mathbf{N}(t))' &= \dot{\gamma}(t) + 1/\kappa \dot{\mathbf{N}}(t) \\ &= \mathbf{T}(t) - (1/\kappa)\kappa \mathbf{T}(t) \\ &= 0 \end{aligned}$$

Therefore,

 $\gamma(t) + 1/\kappa \mathbf{N}(t) = p$

for some constant p and,

 $\|\boldsymbol{\gamma}(t)-\boldsymbol{p}\|=|1/\kappa|\|\mathbf{N}(t)\|=1/\kappa$