

 $ilde{\gamma}:(ilde{lpha}, ilde{eta})$

 $\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to\mathbb{R}^2$

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2 \text{ is a } unit \text{ } speed$

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ is a *unit speed* parametrization. Therefore, $\mathbf{T}(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore,

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(ilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore,

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = ??\mathbf{N}_s(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = ??\mathbf{N}_s(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\kappa_s(\tilde{t})$ called the **signed curvature**. $\kappa(\tilde{t}) =$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

 γ :

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

 $\gamma:(lpha,eta)$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ is a *unit speed* parametrization. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is **not** a unit speed

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is **not** a unit speed parametrization.

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is **not** a unit speed parametrization. Then, $\gamma(t)$

$$\kappa_s(\tilde{t})$$
 called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\kappa_s(\tilde{t})$$
 called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is **not** a unit speed parametrization. Then, $\gamma(t) = \tilde{\gamma}(s(t))$

 $\dot{\gamma}(t)$

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$

$$\kappa_s(\tilde{t})$$
 called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$

$$= \mathbf{T}(s(t))$$

$$\kappa_s(\tilde{t})$$
 called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$
$$= \mathbf{T}(s(t))||\dot{\gamma}(t)||$$

$$\kappa_s(\tilde{t})$$
 called the **signed curvature**.
$$\kappa(\tilde{t}) = ||\ddot{\tilde{\gamma}}(\tilde{t})|| = ||\kappa_s \mathbf{N}_s(\tilde{t})|| = |\kappa_s|||\mathbf{N}_s(\tilde{t})|| = |\kappa_s(\tilde{t})|$$

$$\left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)'$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\kappa_s(\tilde{t})$ called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$
$$= \mathbf{T}(s(t))||\dot{\gamma}(t)||$$

$$\left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)' = (\mathbf{T}(s(t)))'$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\kappa_s(\tilde{t})$ called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$
$$= \mathbf{T}(s(t))||\dot{\gamma}(t)||$$

$$\left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)' = (\mathbf{T}(s(t)))'$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\kappa_s(\tilde{t})$ called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \mathbf{T}(s(t))||\dot{\gamma}(t)||$$

$$\left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)' = (\mathbf{T}(s(t)))'$$
$$= \dot{\mathbf{T}}(s(t))s'(t)$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\kappa_s(\tilde{t})$ called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$

= $\mathbf{T}(s(t))||\dot{\gamma}(t)||$

$$\left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)' = (\mathbf{T}(s(t)))'$$

$$= \dot{\mathbf{T}}(s(t))s'(t)$$

$$= \kappa_s(s(t))s'(t)\mathbf{N}_s(s(t))$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\kappa_s(\tilde{t})$ called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$
$$= \mathbf{T}(s(t))||\dot{\gamma}(t)||$$

$$\left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)' = (\mathbf{T}(s(t)))'$$

$$= \dot{\mathbf{T}}(s(t))s'(t)$$

$$= \kappa_s(s(t))s'(t)\mathbf{N}_s(s(t))$$

$$= \kappa_s(s(t))\|\gamma(t)\|\mathbf{N}_s(s(t))$$

$$\kappa_s(s(t))\mathbf{N}_s(s(t)) = \frac{1}{\|\dot{\gamma}(t)\|} \left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)'$$

Therefore, $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t})$ is perpendicular to $\mathbf{T}(\tilde{t}) = \dot{\tilde{\gamma}}(\tilde{t})$

 $\mathbf{N}_s(\tilde{t})$ denote the *unit* vector obtained by rotating $\mathbf{T}(\tilde{t})$ anticlockwise.

Therefore, $\dot{\mathbf{T}}(\tilde{t}) = \ddot{\tilde{\gamma}}(\tilde{t}) = \kappa_s(\tilde{t}) \mathbf{N}_s(\tilde{t})$

 $\kappa_s(\tilde{t})$ called the **signed curvature**.

$$\kappa(\tilde{t}) = \|\ddot{\tilde{\gamma}}(\tilde{t})\| = \|\kappa_s \mathbf{N}_s(\tilde{t})\| = |\kappa_s| \|\mathbf{N}_s(\tilde{t})\| = |\kappa_s(\tilde{t})|$$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$
$$= \mathbf{T}(s(t))||\dot{\gamma}(t)||$$

$$\left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)' = (\mathbf{T}(s(t)))'$$

$$= \dot{\mathbf{T}}(s(t))s'(t)$$

$$= \kappa_s(s(t))s'(t)\mathbf{N}_s(s(t))$$

$$= \kappa_s(s(t))\|\gamma(t)\|\mathbf{N}_s(s(t))$$

$$\kappa_{s}(s(t))\mathbf{N}_{s}(s(t)) = \frac{1}{\|\dot{\gamma}(t)\|} \left(\frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\right)'$$

$$= \frac{1}{\|\dot{\gamma}(t)\|} \frac{\|\dot{\gamma}(t)\|\ddot{\gamma}(t) - \dot{\gamma}(t)\frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|^{2}}}{\|\dot{\gamma}(t)\|^{2}}$$