γ

Definition. $\gamma:(\alpha,\beta)$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$

$$\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector*

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

Show that $\dot{\gamma}(t)$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

Show that $\dot{\gamma}(t) = s'(t)$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

Show that $\dot{\gamma}(t) = s'(t)\mathbf{T}(t)$.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Show that
$$\dot{\gamma}(t) = \underbrace{s'(t)}_{\text{"Change in distance"}} \times \mathbf{T}(t)$$
.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Show that
$$\dot{\gamma}(t) = \underbrace{s'(t)}_{\text{"Change in distance"}} \times \underbrace{\mathbf{T}(t)}_{\text{"Change in direction"}}.$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Show that
$$\dot{\gamma}(t) = \underbrace{s'(t)}_{\text{"Change in distance"}} \times \underbrace{\mathbf{T}(t)}_{\text{"Change in direction"}}.$$

Solution.
$$\dot{\gamma}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|} \times$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Show that
$$\dot{\gamma}(t) = \underbrace{s'(t)}_{\text{"Change in distance"}} \times \underbrace{\mathbf{T}(t)}_{\text{"Change in direction"}}.$$

Solution.
$$\dot{\gamma}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|} \times \|\dot{\gamma}(t)\|$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Show that
$$\dot{\gamma}(t) = \underbrace{s'(t)}_{\text{"Change in distance"}} \times \underbrace{\mathbf{T}(t)}_{\text{"Change in direction"}}.$$

Solution.
$$\dot{\gamma}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|} \times \|\dot{\gamma}(t)\| = \mathbf{T}(t) \times$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Show that
$$\dot{\gamma}(t) = \underbrace{s'(t)}_{\text{"Change in distance"}} \times \underbrace{\mathbf{T}(t)}_{\text{"Change in direction"}}.$$

Solution.
$$\dot{\gamma}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|} \times \|\dot{\gamma}(t)\| = \mathbf{T}(t) \times s'(t)$$

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization. $\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular parametrization. $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

 $\dot{ ilde{\gamma}}(ilde{t})$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

 $\dot{\widetilde{\gamma}}(\widetilde{t})$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t}))$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall, If g(f(t)) = t

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If
$$g(f(t)) = t$$
, then

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall, If g(f(t)) = t, then g'(f(t))f'(t) = 1,

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall, If g(f(t)) = t, then g'(f(t))f'(t) = 1, therefore,

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall, If g(f(t)) = t, then

$$g'(f(t))f'(t) = 1$$
, therefore, if $f'(t) \neq 0$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the *unit tangent vector* at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,
If g(f(t)) = t, then g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{1}{f'(t)}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

 $\overline{\text{Taking } f(t) = s(t)}$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{\|\gamma'(t)\|}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{\|\gamma'(t)\|}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{\|\gamma'(t)\|}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{\|\dot{\gamma}(s^{-1}(\tilde{t}))\|}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \times ??$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{\|\gamma'(t)\|}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{\|\dot{\gamma}(s^{-1}(\tilde{t}))\|}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$
$$= \dot{\gamma}(s^{-1}(\tilde{t})) \frac{1}{\|\dot{\gamma}(s^{-1}(\tilde{t}))\|}$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{\|\gamma'(t)\|}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{\|\dot{\gamma}(s^{-1}(\tilde{t}))\|}$$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\mathbf{T}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$ is the unit tangent vector at t.

Exercise.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ a regular parametrization.

 $\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$ a unit speed reparametrization.

Show that,

$$\dot{\tilde{\gamma}}(\tilde{t}) = \mathbf{T}(s^{-1}(\tilde{t}))$$

Solution. $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$

$$\dot{\tilde{\gamma}}(\tilde{t}) = \dot{\gamma}(s^{-1}(\tilde{t}))(s^{-1}(\tilde{t}))'$$

$$= \dot{\gamma}(s^{-1}(\tilde{t})) \frac{1}{\|\dot{\gamma}(s^{-1}(\tilde{t}))\|}$$

$$= \mathbf{T}(s^{-1}(\tilde{t})))$$

Recall,

If g(f(t)) = t, then

g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t,

$$g'(f(t)) = \frac{1}{f'(t)}$$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{\|\gamma'(t)\|}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{\|\dot{\gamma}(s^{-1}(\tilde{t}))\|}$$

If $\|\dot{\gamma}(t)\|$

If $\|\dot{\gamma}(t)\|$ is a constant c,

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant.

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t-s(t)/c is a constant. Here s(t) is the arc-length function

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t-s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) =$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)||$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| \mathrm{d}t$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$
$$= ct - ct_0$$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

Solution.

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$
$$= ct - ct_0$$

So, s(t)/c

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

Solution.

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$
$$= ct - ct_0$$

So, $s(t)/c = t - t_0$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$
$$= ct - ct_0$$

So,
$$s(t)/c = t - t_0$$
 \Longrightarrow

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$
$$= ct - ct_0$$

So,
$$s(t)/c = t - t_0$$

 $\implies s(t)/c - t$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$
$$= ct - ct_0$$

So,
$$s(t)/c = t - t_0$$

 $\implies s(t)/c - t = -t_0$

If $\|\dot{\gamma}(t)\|$ is a constant c, show that t - s(t)/c is a constant. Here s(t) is the arc-length function "measured from (fixed) t_0 ".

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(t)|| dt$$
$$= \int_{t_0}^t c dt$$
$$= ct - ct_0$$

So,
$$s(t)/c = t - t_0$$

 $\Rightarrow s(t)/c - t = -t_0$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

 $\gamma(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

$$\gamma(t) = (r\cos(t), r\sin(t))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

$$\gamma(t) = (r\cos(t), r\sin(t))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{\gamma}(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (-r/r\sin(t/r), r/r\cos(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (-r/r\sin(t/r), r/r\cos(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$

 $\ddot{\gamma}(t)$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{z}(t) = (\sin(t/n), \pi/n \cos(t/n))$

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$
$$\|\ddot{\gamma}(t)\| = 1/r$$

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{z}(t) = (\sin(t/n), \pi/n \cos(t/n))$

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$
$$\|\ddot{\gamma}(t)\| = 1/r$$

Definition. $\gamma: (\alpha, \beta) \to \mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

$$\kappa(t) = ||\ddot{\gamma}(t)|| = 1/r$$

Exercise. Show that the curvature

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

$$\kappa(t) = ||\ddot{\gamma}(t)|| = 1/r$$

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2,\ unit\ speed\$ parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed $\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

$$\kappa(t) = ||\ddot{\gamma}(t)|| = 1/r$$

Exercise. Show that the curvature at any point of any line

Definition. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$, unit speed parametrization $\|\ddot{\gamma}(t)\|$ is the curvature, denoted $\kappa(t)$, at $\gamma(t)$

Example.

$$\gamma(t) = (r\cos(t/r), r\sin(t/r))$$

now unit speed

$$\dot{\gamma}(t) = (\sin(t/r), r/r\cos(t/r))$$

$$\ddot{\gamma}(t) = (-1/r\cos(t/r), -1/r\sin(t/r))$$

$$\kappa(t) = ||\ddot{\gamma}(t)|| = 1/r$$

Exercise. Show that the curvature at any point of any line is 0.

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

 $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$ Equivalently,

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$

 $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$ Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$ and

 $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$ Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$ and (by definition),

 $\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$ Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$ and (by definition), $\kappa(t)$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) =$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t)$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) =$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = \|\dot{\gamma}(t)\|$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = ||\dot{\gamma}(t)||$$

 $(s'(t))^2 =$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = ||\dot{\gamma}(t)||$$
$$(s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t)$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = ||\dot{\gamma}(t)||$$

$$(s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t)$$

$$2(s'(t))s''(t) =$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = ||\dot{\gamma}(t)||$$

$$(s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t)$$

$$2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t)$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = ||\dot{\gamma}(t)||$$

$$(s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t)$$

$$2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t)$$

$$2||\dot{\gamma}(t)||s''(t) =$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = ||\dot{\gamma}(t)||$$

$$(s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t)$$

$$2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t)$$

$$2||\dot{\gamma}(t)||s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t)$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = ||\dot{\gamma}(t)||$$

$$(s'(t))^{2} = \dot{\gamma}(t).\dot{\gamma}(t)$$

$$2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t)$$

$$2||\dot{\gamma}(t)||s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t)$$

$$s''(t) =$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \ddot{\tilde{\gamma}}(s(t)) ||\dot{\gamma}(t)||^2 +$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \ddot{\tilde{\gamma}}(s(t)) \|\dot{\gamma}(t)\|^2 + \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))||\dot{\gamma}(t)||$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \underbrace{\ddot{\tilde{\gamma}}(s(t))}_{\text{to get }\kappa(t)} \|\dot{\gamma}(t)\|^2 + \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

 $\kappa(t)$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))||\dot{\gamma}(t)||$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \underbrace{\ddot{\tilde{\gamma}}(s(t))}_{\text{to get }\kappa(t)} \|\dot{\gamma}(t)\|^2 + \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\kappa(t) = \|\ddot{\tilde{\gamma}}(s(t))\|$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \underbrace{\ddot{\tilde{\gamma}}(s(t))}_{\text{to get }\kappa(t)} \|\dot{\gamma}(t)\|^2 + \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$
$$\ddot{\gamma}(t) - \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|} = \ddot{\tilde{\gamma}}(s(t)) \|\dot{\gamma}(t)\|^2$$

$$\kappa(t) = \|\ddot{\tilde{\gamma}}(s(t))\|$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \underbrace{\ddot{\tilde{\gamma}}(s(t))}_{\text{to get }\kappa(t)} \|\dot{\gamma}(t)\|^2 + \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$
$$\ddot{\tilde{\gamma}}(s(t)) \|\dot{\gamma}(t)\|^2 = \ddot{\gamma}(t) - \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\kappa(t) = \|\ddot{\tilde{\gamma}}(s(t))\|$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))\|\dot{\gamma}(t)\|$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \underbrace{\ddot{\tilde{\gamma}}(s(t))}_{\text{to get }\kappa(t)} \|\dot{\gamma}(t)\|^2 + \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\tilde{\gamma}}(s(t)) \|\dot{\gamma}(t)\|^2 = \ddot{\gamma}(t) - \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\kappa(t) = \|\ddot{\tilde{\gamma}}(s(t))\|$$

$$= \|\ddot{\tilde{\gamma}}(t) - \dot{\tilde{\gamma}}(s(t))\frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|^2}\|$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(s^{-1}(\tilde{t}))$$

Equivalently, $\gamma(t) = \tilde{\gamma}(s(t))$
and (by definition), $\kappa(t) = ||\ddot{\tilde{\gamma}}(s(t))||$

$$\dot{\gamma}(t) = \dot{\tilde{\gamma}}(s(t))s'(t) = \dot{\tilde{\gamma}}(s(t))||\dot{\gamma}(t)||$$

$$s'(t) = \|\dot{\gamma}(t)\| (s'(t))^2 = \dot{\gamma}(t).\dot{\gamma}(t) 2(s'(t))s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) 2\|\dot{\gamma}(t)\|s''(t) = 2\dot{\gamma}(t).\ddot{\gamma}(t) s''(t) = \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\gamma}(t) = \underbrace{\ddot{\tilde{\gamma}}(s(t))}_{\text{to get }\kappa(t)} \|\dot{\gamma}(t)\|^2 + \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\ddot{\tilde{\gamma}}(s(t)) \|\dot{\gamma}(t)\|^2 = \ddot{\gamma}(t) - \dot{\tilde{\gamma}}(s(t)) \frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}$$

$$\kappa(t) = \|\ddot{\tilde{\gamma}}(s(t))\|$$

$$= \left\|\frac{\ddot{\gamma}(t) - \dot{\tilde{\gamma}}(s(t))\frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|}}{\|\dot{\gamma}(t)\|^2}\right\|$$

$$= \left\|\frac{\ddot{\gamma}(t) - \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|}\frac{\dot{\gamma}(t).\ddot{\gamma}(t)}{\|\dot{\gamma}(t)\|^2}}{\|\dot{\gamma}(t)\|^2}\right\|$$