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(x1, y2) + (x2, y2) := (x1 + x2, y1 + y2)
(x1, y2)− (x2, y2) := (x1 − x2, y1 − y2)

Scalar multiplication:
v := (1, 2)
2v = 2(1, 2) = (2, 4)
In general:
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Vectors

x
-4 -3 -2 -1 1 2 3 4

y

-4

-3

-2

-1

1

2

3

4

O

v = (2, 3)
w = (1,−1)

Vector addition and subtraction :
v + w = (3, 2)

In general:
(x1, y2) + (x2, y2) := (x1 + x2, y1 + y2)
(x1, y2)− (x2, y2) := (x1 − x2, y1 − y2)

Scalar multiplication:
v := (1, 2)
2v = 2(1, 2) = (2, 4)
In general:
λ(x, y)
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Vectors

x
-4 -3 -2 -1 1 2 3 4

y

-4

-3

-2

-1

1

2

3

4

O

v = (2, 3)
w = (1,−1)

Vector addition and subtraction :
v + w = (3, 2)

In general:
(x1, y2) + (x2, y2) := (x1 + x2, y1 + y2)
(x1, y2)− (x2, y2) := (x1 − x2, y1 − y2)

Scalar multiplication:
v := (1, 2)
2v = 2(1, 2) = (2, 4)
In general:
λ(x, y) := (λx, λy)
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p := (2, 3),
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p := (2, 3),
w := (1, 1),
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2

77



p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β)→ R2
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t)
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p,
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | }
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p}
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv}
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,

Tγ(t) := {q ∈ R2}
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,

Tγ(t) := {q ∈ R2 | q = γ(t)}
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,

Tγ(t) := {q ∈ R2 | q = γ(t) + kγ̇(t)}
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,

Tγ(t) := {q ∈ R2 | q = γ(t) + kγ̇(t)}
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,

Tγ(t) := {q ∈ R2 | q = γ(t) + kγ̇(t), k ∈ R}

Definition. A smooth parametrized curve, γ :
(α, β)→ R2,
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p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,

Tγ(t) := {q ∈ R2 | q = γ(t) + kγ̇(t), k ∈ R}

Definition. A smooth parametrized curve, γ :
(α, β) → R2, is called a regular parametrized
curve

101



p := (2, 3),
w := (1, 1),
q := p + w = (2, 3) + (1, 1) = (3, 4)
(displacement of p by w).

p := (2, 3) and q = (3, 4),
v = q − p is the displacement that takes p to q

γ : (α, β)→ R2 is a smooth parametrization.
γ(t) is the point at t
γ(t + h) is the point at t + h
γ(t + h)− γ(t) is the displacement vector at t + h

Definition. γ : (α, β) → R2 is a smooth parametriza-
tion.

γ̇(t) = lim
h→0

(1/h)(γ(t + h)− γ(t))

is called the velocity vector at t and γ̇ : (α, β) → R2 is
called the velocity vector field of the parametrization γ.

Points on the straight line passing through p, parallel to
v 6= 0:

{q ∈ R2 | q = p + kv, k ∈ R}

Definition. If γ̇(t) 6= 0, the line tangent to γ at t is,

Tγ(t) := {q ∈ R2 | q = γ(t) + kγ̇(t), k ∈ R}

Definition. A smooth parametrized curve, γ :
(α, β) → R2, is called a regular parametrized
curve if γ̇(t) 6= 0 for each t ∈ (α, β).

From now on, we will assume all parametrized
curves to be regular
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))

γ̃(t) = (f1(φ(t)), f2(φ(t)))
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))

γ̃(t) = (f1(φ(t)), f2(φ(t)))

˙̃γ(t) = (f ′1(φ(t))φ′(t), f ′2(φ(t))φ′(t))
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))

γ̃(t) = (f1(φ(t)), f2(φ(t)))

˙̃γ(t) = (f ′1(φ(t))φ′(t), f ′2(φ(t))φ′(t))

˙̃γ(t) = (f ′1(φ(t)), f ′2(φ(t)))φ′(t)
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))

γ̃(t) = (f1(φ(t)), f2(φ(t)))

˙̃γ(t) = (f ′1(φ(t))φ′(t), f ′2(φ(t))φ′(t))

˙̃γ(t) = (f ′1(φ(t)), f ′2(φ(t)))φ′(t)

˙̃γ(t) = γ̇(φ(t))φ′(t)
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))

γ̃(t) = (f1(φ(t)), f2(φ(t)))

˙̃γ(t) = (f ′1(φ(t))φ′(t), f ′2(φ(t))φ′(t))

˙̃γ(t) = (f ′1(φ(t)), f ′2(φ(t)))φ′(t)

˙̃γ(t) = γ̇(φ(t))φ′(t)

Corollary. The tangent line is invariant under a
reparametrization, φ(t).

Proof.

{γ(t) + k ˙̃γ(t)}
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Corollary. The tangent line is invariant under a
reparametrization, φ(t).

Proof.

{γ(t) + k ˙̃γ(t) | k ∈ R} = {γ(t) + kγ̇(φ(t))φ′(t)}
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))

γ̃(t) = (f1(φ(t)), f2(φ(t)))

˙̃γ(t) = (f ′1(φ(t))φ′(t), f ′2(φ(t))φ′(t))

˙̃γ(t) = (f ′1(φ(t)), f ′2(φ(t)))φ′(t)

˙̃γ(t) = γ̇(φ(t))φ′(t)

Corollary. The tangent line is invariant under a
reparametrization, φ(t), if φ′(t) 6= 0

Proof.

{γ(t) + k ˙̃γ(t) | k ∈ R} = {γ(t) + kγ̇(φ(t))φ′(t) | k ∈ R}
= {γ(t) + kγ̇(φ(t))}
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)
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= {γ(t) + kγ̇(φ(t)) | k ∈ R}
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)
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˙̃γ(t) = (f ′1(φ(t)), f ′2(φ(t)))φ′(t)

˙̃γ(t) = γ̇(φ(t))φ′(t)

Corollary. The tangent line is invariant under a
reparametrization, φ(t), if φ′(t) 6= 0

Proof.

{γ(t) + k ˙̃γ(t) | k ∈ R} = {γ(t) + kγ̇(φ(t))φ′(t) | k ∈ R}
= {γ(t) + kγ̇(φ(t)) | k ∈ R}

Note: γ̃(t) is the same point, p, as γ(φ(t))
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)
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Corollary. The tangent line is invariant under a
reparametrization, φ(t), if φ′(t) 6= 0

Proof.

{γ(t) + k ˙̃γ(t) | k ∈ R} = {γ(t) + kγ̇(φ(t))φ′(t) | k ∈ R}
= {γ(t) + kγ̇(φ(t)) | k ∈ R}

Note: γ̃(t) is the same point, p, as γ(φ(t))
When using γ̃, the point p “appears at time t”
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reparametrization, φ(t), if φ′(t) 6= 0

Proof.
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= {γ(t) + kγ̇(φ(t)) | k ∈ R}

Note: γ̃(t) is the same point, p, as γ(φ(t))
When using γ̃, the point p “appears at time t”
When using γ, the point p “appears at time φ(t)”
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Lemma. If γ̃(t) = γ(φ(t)) is a reparametrization,
then ˙̃γ(t) = γ̇(φ(t))φ′(t)

Proof.

γ̃(t) = γ(φ(t))

γ̃(t) = (f1(φ(t)), f2(φ(t)))

˙̃γ(t) = (f ′1(φ(t))φ′(t), f ′2(φ(t))φ′(t))

˙̃γ(t) = (f ′1(φ(t)), f ′2(φ(t)))φ′(t)

˙̃γ(t) = γ̇(φ(t))φ′(t)

Corollary. The tangent line is invariant under a
reparametrization, φ(t), if φ′(t) 6= 0

Proof.

{γ(t) + k ˙̃γ(t) | k ∈ R} = {γ(t) + kγ̇(φ(t))φ′(t) | k ∈ R}
= {γ(t) + kγ̇(φ(t)) | k ∈ R}

Note: γ̃(t) is the same point, p, as γ(φ(t))
When using γ̃, the point p “appears at time t”
When using γ, the point p “appears at time φ(t)”
So, ˙̃γ(t) and γ̇(φ(t)) are velocity vectors at the same
point p

119


