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v:(—1,1) — R?
7(t> — (tat)

5 (=1/2,1/2) — R,
V(t) = (2t,2t)
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called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:



=(2,3),
= (1,1),
(displacement of p by w).

p -
W
q -

=(2,3) and ¢ = (3,4),
q — p is the displacement that takes p to ¢

< 3

v : (a, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — ~(t) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:

{geR’|}



=(2,3),
= (1,1),
(displacement of p by w).

p -
W
q -

=(2,3) and ¢ = (3,4),
q — p is the displacement that takes p to ¢

< 3

v : (a, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — ~(t) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:

{¢ge R’ | q=p}



=(2,3),
= (1,1),
(displacement of p by w).

p -
W
q -

=(2,3) and ¢ = (3,4),
q — p is the displacement that takes p to ¢

< 3

v : (a, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — ~(t) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:

{geR’ | g=p+kv}



=(2,3),
= (1,1),
(displacement of p by w).

p -
W
q -

=(2,3) and ¢ = (3,4),
q — p is the displacement that takes p to ¢

< 3

v : (a, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — ~(t) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:

{qeR* |g=p+kv,keR}



p = (2,3), Points on the straight line passing through p, parallel to
w = (1,1), v £ 0:

¢:=p+w=1(2,3)+(11) =(3,4) )

(displacement of p by w). {l¢eR° | g=p+kv,kcR}

p = (2.3) and g = (3,4), Definition. If 4(t) # 0, the line tangent to ~

v = q — p is the displacement that takes p to q

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.



p = (2,3), Points on the straight line passing through p, parallel to
w = (1,1), v £ 0:

¢:=p+w=1(2,3)+(11) =(3,4) )

(displacement of p by w). {l¢eR° | g=p+kv,kcR}

p = (2.3) and g = (3,4), Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,

v = q — p is the displacement that takes p to q

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.



p = (2,3), Points on the straight line passing through p, parallel to
w = (1,1), v £ 0:

¢:=p+w=1(2,3)+(11) =(3,4) )

(displacement of p by w). {l¢eR° | g=p+kv,kcR}

p = (2.3) and g = (3,4), Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,

v = g — p is the displacement that takes p to ¢ T.(t) :={q € R}

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.



p = (2,3), Points on the straight line passing through p, parallel to
w = (1,1), v £ 0:

¢:=p+w=1(2,3)+(11) =(3,4) )

(displacement of p by w). {l¢eR° | g=p+kv,kcR}

p = (2.3) and g = (3,4), Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,

v = g — p is the displacement that takes p to ¢ T.(t) :={q € R? | ¢ = ()}

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.



p = (2,3), Points on the straight line passing through p, parallel to
w = (1,1), v £ 0:

¢:=p+w=1(2,3)+(11) =(3,4) )

(displacement of p by w). {l¢eR° | g=p+kv,kcR}

p = (2.3) and g = (3,4), Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,

v = ¢ — p is the displacement that takes p to ¢ T.(t) ={qg e R* | g =~(t) + ky(t)}

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.



p = (2,3), Points on the straight line passing through p, parallel to
w = (1,1), v £ 0:

¢:=p+w=1(2,3)+(11) =(3,4) )

(displacement of p by w). {l¢eR° | g=p+kv,kcR}

p = (2.3) and g = (3,4), Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,

v = ¢ — p is the displacement that takes p to ¢ T.(t) ={qg e R* | g =~(t) + ky(t)}

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.



p = (2,3),

w = (1,1),
¢:=p+w=1(2,3)+(11) =(3,4)
(displacement of p by w).

=(2,3) and ¢ = (3,4),
q — p is the displacement that takes p to ¢

< 3

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:

{qeR* |g=p+kv,keR}
Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,
T,(t) ={q € R* | ¢ = y(t) + k(t), k € R}

Definition. A smooth parametrized curve, -y
(@, B) = R?,



p = (2,3),

w = (1,1),
¢:=p+w=1(2,3)+(11) =(3,4)
(displacement of p by w).

=(2,3) and ¢ = (3,4),
q — p is the displacement that takes p to ¢

< 3

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:

{qeR* |g=p+kv,keR}
Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,
T,(t) ={q € R* | ¢ = y(t) + k(t), k € R}

Definition. A smooth parametrized curve, -y

(a,8) — RZ? is called a regular parametrized
curve



p = (2,3),

w = (1,1),
¢:=p+w=1(2,3)+(11) =(3,4)
(displacement of p by w).

=(2,3) and ¢ = (3,4),
q — p is the displacement that takes p to ¢

< 3

v : (e, B) — R? is a smooth parametrization.

v(t) is the point at t

v(t + h) is the point at t + h

v(t + h) — y(¢) is the displacement vector at t + h

Definition. v : (o, ) — R? is a smooth parametriza-
tion.

() = I (1/R)(y(t + h) —7(?))

is called the velocity vector at ¢ and 7 : (o, B) — R? is
called the velocity vector field of the parametrization +.

Points on the straight line passing through p, parallel to
v # 0:

{qeR* |g=p+kv,keR}
Definition. If 4(t) # 0, the line tangent to ~ at ¢ is,
T,(t) ={q € R* | ¢ = y(t) + k(t), k € R}

Definition. A smooth parametrized curve, -y

(a,8) — RZ? is called a regular parametrized
curve if 4(t) # 0 for each t € (a, ).

From now on, we will assume all parametrized
curves to be regular



Lemma. If (t) = v(¢(t)) is a reparametrization,



Lemma. If ¥(t) = v(¢(t)) is a reparametrization,
then () = 7(¢())¢'(t)



Lemma. If (t) = ~v(¢(t)) is a reparametrization,
then 3(t) = 4(4(t))¢'(t)

Proof.



Lemma. If ¥(t) = v(¢(t)) is a reparametrization,
then () = 7(¢())¢'(t)

Proof.
Y(t) = v(o(t))
Y(E) = (f1(o(2)), f2(9(1)))



Lemma. If ¥(t) = v(¢(t)) is a reparametrization,
then () = 7(¢())¢'(t)

Proof.
Y(t) = v(o(t))
Y(E) = (f1(o(2)), f2(9(1)))
V(t) = (filo(t)d' (1), f2(o(1)¢' (1))



Proof.
t
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(p(t)) is a reparametrization,
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Lemma. If (t) = ~v(¢(t)) is a reparametrization,

Proof.
Y(t) = v(o(t))
7(t) = (fulo(t)), f2((2)))
V() = (F(@0))¢' (), fr((t)¢' (1))
(t) = (fi(e(t)), f2(d(t))¢'(t)
() = (o) (t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t).

Proof.

{r(t) + k3(1)}



Lemma. If (t) = ~v(¢(t)) is a reparametrization,

Proof.
Y(t) = v(o(t))
7(t) = (fulo(t)), f2((2)))
V() = (F(@0))¢' (), fr((t)¢' (1))
(t) = (fi(e(t)), f2(d(t))¢'(t)
() = (o) (t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t).

Proof.

() + k() [ ke R} = {y(t) + k3 (6(t))¢' ()}

[]



Lemma. If (t) = ~v(¢(t)) is a reparametrization,

Proof.
Y(t) = v(o(t))
7(t) = (fulo(t)), f2((2)))
V() = (F(@0))¢' (), fr((t)¢' (1))
(t) = (fi(e(t)), f2(d(t))¢'(t)
() = (o) (t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t).

Proof.

(V) +EY(t) | k € R} = {(t) + k¥(o(1))¢ (1) | k € R}

[]



Lemma. If (t) = ~v(¢(t)) is a reparametrization,

Proof.
Y(t) = v(o(t))
7(E) = (f1(9(2)), f2(9(1)))
V() = (filo(t)d'(t), fo(o(1)¢' (1))
(t) = (file(t)), f2(d(t))¢'(t)
() = 4(6(1)d'(t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t).

Proof.

(V) +EY(t) | k € R} = {(t) + k¥(o(1))d(t) | k € R}



Lemma. If (t) = ~v(¢(t)) is a reparametrization,

Proof.
Y(t) = v(o(t))
7(E) = (f1(9(2)), f2(9(1)))
V() = (filo(t)d'(t), fo(o(1)¢' (1))
(t) = (file(t)), f2(d(t))¢'(t)
() = 4(6(1)d'(t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t), if ¢'(t) # 0

Proof.

(V) +EY(t) | k € R} = {(t) + k¥(o(1))d(t) | k € R}
= () + ky(e(t))}



Lemma. If (t) = ~v(¢(t)) is a reparametrization,

Proof.
Y(t) = v(o(t))
7(E) = (f1(9(2)), f2(9(1)))
V() = (filo(t)d'(t), fo(o(1)¢' (1))
(t) = (file(t)), f2(d(t))¢'(t)
() = 4(6(1)d'(t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t), if ¢'(t) # 0

Proof.

(V) +EY(t) | k € R} = {(t) + k¥(o(1))d(t) | k € R}
= {7(t) +EY(o(t)) | k € R}

[]



Lemma. If 4(t) = ~v(¢(t)) is a reparametrization, Note: (t) is the same point, p, as y(¢(t))

Proof.
Y(t) = v(o(t))
7(E) = (f1(9(2)), f2(9(1)))
V() = (filo(t)d'(t), fo(o(1)¢' (1))
(t) = (file(t)), f2(d(t))¢'(t)
() = 4(6(1)d'(t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t), if ¢'(t) # 0

Proof.

(V) +EY(t) | k € R} = {(t) + k¥(o(1))d(t) | k € R}
= {7(t) +EY(o(t)) | k € R}

[]



Lemma. If 4(t) = ~v(¢(t)) is a reparametrization, Note: (t) is the same point, p, as y(¢(t))

then 4(t) = (1)) () When using 7, the point p “appears at time t”
Proof.

Y(t) = ~(o(t))

7(t) = (f1(é(1)), f2(9(t)))

V(8 = (F1(6(£)d' (1), fo(6(8) (1))

(1) = (f1(6(1), f2(6(1)¢'(t)

Y(t) = (1)) (t)

[]

Corollary. The tangent line is invariant under a
reparametrization, ¢(t), if ¢'(t) # 0

Proof.

(V) +EY(t) | k € R} = {(t) + k¥(o(1))d(t) | k € R}
= {7(t) +EY(o(t)) | k € R}

[]



Lemma. If 4(t) = ~v(¢(t)) is a reparametrization, Note: (t) is the same point, p, as y(¢(t))

Proof.
Y(t) =(o(t))
7(t) = (f1(e(1))
() = (file(t)¢'(t),
¥(t) = (fi(o(1)), f
() = F(e(t)¢'(t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t), if ¢'(t) # 0

Proof.

When using 7, the point p “appears at time t”
When using -, the point p “appears at time ¢(t)”

(V) +EY(t) | k € R} = {(t) + k¥(o(1))d(t) | k € R}

= {7(t) +EY(o(t)) | k € R}



(t
then ~(t ) (1))@’ (t) When using 7, the point p “appears at time t”
When using -, the point p “appears at time ¢(t)”

Proof. So, A(t) and (¢p(t)) are velocity vectors at the same
Y(t) = ~(o(1)) pomt p
7(t) = (fi(o(t)), f2(0(2)))
V(t) = (file())d (1), fo(d(t)¢' (1)
Y(t) = (fi(e(t), f5(o(t)(t)
Y(t) = 4(6(t)¢'(t)

Corollary. The tangent line is invariant under a
reparametrization, ¢(t), if ¢'(t) # 0

Proof.

(V) +EY(t) | k € R} = {(t) + k¥(o(1))d(t) | k € R}
= {7(t) +EY(o(t)) | k € R}

[]



