Exercise sheet 6

Curves and Surfaces, MTH201

- 1. Consider any surface $S \subset \mathbb{R}^3$, let $f : S \to \mathbb{R}$, f(x, y, z) = x. Show that this is a smooth function.
- 2. Consider a surface $S \subset \mathbb{R}^3$, let $f: S \to P$, where f(x, y, z) = (x, y, 0) and P is the plane defined by z = 0. Show that this is a smooth function.
- 3. Give a surface patch for a sphere. Compute the first fundamental form using the surface patch.
- 4. Give a surface patch for a plane. Compute the first fundamental form using the surface patch.
- 5. How does the matrix associated with the first fundamental form change under a coordinate transformation?
- 6. For the map f in exercise 2, and compute $\mathcal{D}_p(f)$.
- 7. This exercise is to revise what is taught in the lecture. Recall the definition of the Weingarten map, which is denoted by W_p
 - (a) Prove that $\mathcal{W}_p(\sigma_x) = \hat{\mathbf{n}}_x$ and $\mathcal{W}_p(\sigma_y) = \hat{\mathbf{n}}_y$
 - (b) Prove that $\mathcal{W}(\mathbf{v})$ lies in the tangent space for any tangent vector v.
 - (c) Prove that the Weingarten map is a linear map.
 - (d) Therefore, it is enough to compute the Weingarten map for the basis tangent vectors σ_x and σ_y and we therefore need to find the coefficients a, b, c and d, below:

$$\mathcal{W}_p(\sigma_x) = a\sigma_x + b\sigma_y$$

 $\mathcal{W}_p(\sigma_y) = c\sigma_x + d\sigma_y$

(e) Define $L := \sigma_{xx} \cdot \hat{\mathbf{n}}, M := \sigma_{xy} \cdot \hat{\mathbf{n}}, N := \sigma_{yy} \cdot \hat{\mathbf{n}}$. Prove that $L = -\sigma_x \cdot \hat{\mathbf{n}}_x, M = -\sigma_x \cdot \hat{\mathbf{n}}_y = -\sigma_y \cdot \hat{\mathbf{n}}_x$, and $N = -\sigma_y \cdot \hat{\mathbf{n}}_y$. The following matrix is called the matrix of the matrix of the second fundamental form:

$$\begin{pmatrix} L & M \\ M & N \end{pmatrix}$$

(f) By taking the dot product on both sides of each of the two equations in part 4 by σ_x and then by σ_y , obtain 4 linear equations whose unknowns are a, b, c, and d. Compute a, b, c, and d in terms of the first fundamenal form (i.e. E, F, G), and the second fundamental form (L, M, and N).