Exercise sheet 6

Curves and Surfaces, MTH201

1. Consider any surface $S \subset \mathbb{R}^{3}$, let $f: S \rightarrow \mathbb{R}, f(x, y, z)=x$. Show that this is a smooth function.
2. Consider a surface $S \subset \mathbb{R}^{3}$, let $f: S \rightarrow P$, where $f(x, y, z)=(x, y, 0)$ and P is the plane defined by $z=0$. Show that this is a smooth function.
3. Give a surface patch for a sphere. Compute the first fundamental form using the surface patch.
4. Give a surface patch for a plane. Compute the first fundamental form using the surface patch.
5. How does the matrix associated with the first fundamental form change under a coordinate transformation?
6. For the map f in exercise 2 , and compute $\mathcal{D}_{p}(f)$.
7. This exercise is to revise what is taught in the lecture. Recall the definition of the Weingarten map, which is denoted by \mathcal{W}_{p}
(a) Prove that $\mathcal{W}_{p}\left(\sigma_{x}\right)=\hat{\tilde{\mathbf{n}}}_{x}$ and $\mathcal{W}_{p}\left(\sigma_{y}\right)=\hat{\tilde{\mathbf{n}}}_{y}$
(b) Prove that $\mathcal{W}(\mathbf{v})$ lies in the tangent space for any tangent vector v.
(c) Prove that the Weingarten map is a linear map.
(d) Therefore, it is enough to compute the Weingarten map for the basis tangent vectors σ_{x} and σ_{y} and we therefore need to find the coefficients a, b, c and d, below:

$$
\begin{aligned}
& \mathcal{W}_{p}\left(\sigma_{x}\right)=a \sigma_{x}+b \sigma_{y} \\
& \mathcal{W}_{p}\left(\sigma_{y}\right)=c \sigma_{x}+d \sigma_{y}
\end{aligned}
$$

(e) Define $L:=\sigma_{x x} \cdot \hat{\mathbf{n}}, M:=\sigma_{x y} \cdot \hat{\mathbf{n}}, N:=\sigma_{y y} \cdot \hat{\mathbf{n}}$. Prove that $L=$ $-\sigma_{x} \cdot \hat{\mathbf{n}}_{x}, M=-\sigma_{x} \cdot \hat{\mathbf{n}}_{y}=-\sigma_{y} \cdot \hat{\mathbf{n}}_{x}$, and $N=-\sigma_{y} \cdot \hat{\mathbf{n}}_{y}$. The following matrix is called the matrix of the matrix of the second fundamental form:

$$
\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

(f) By taking the dot product on both sides of each of the two equations in part 4 by σ_{x} and then by σ_{y}, obtain 4 linear equations whose unknowns are a, b, c, and d. Compute a, b, c, and d in terms of the first fundamenal form (i.e. E, F, G), and the second fundamental form $(L, M$, and $N)$.

