
Exercise sheet 5

Curves and Surfaces, MTH201

Additional exercises

NOTE: These exercises repeat many of the concepts / exrecises covered ear-
lier and are meant for you to identify gaps in your understanding. It includes
concepts covered during the lectures by breaking them down into smaller exer-
cises. They are not exhaustive and the mid-semester examination will not be
restricted to these questions, however, hopefully these questions will help you
to revise some of the concepts.

Curves on surfaces

Let S ⊂ R3 be a part of a surface and σ : U → S be a regular surface patch.

1. For each of the surface patches below, identify the surface that they (par-
tially) cover:

(a) σ : R2 → R3, σ(x, y) = (x, y, 0).

(b) σ : R2 → R3, σ(x, y) = (x, y, x+ y).

(c) σ : R2 → R3, σ(x, y) = (cos(x), sin(x), y).

(d) σ : R2 → R3, σ(x, y) = (x, y,
√
r2 − x2 − y2).

(e) σ : R2 → R3, σ(x, y) = (x, y,
√
r2 − x2 + y2).

2. If U is an open subset in R2 and f : U → R is a smooth function, then
show that σ(x, y) := (x, y, f(x, y)) is a regular surface patch.

3. Consider a γ : (a, b)→ S ⊂ R3 parametrizing a curve that lies on the part
of the surface covered by the surface patch. In other words, for each t,
γ(t) must, be in the image of σ, i.e. there is some x(t), and y(t) in U , so
that γ(t) = σ(x(t), y(t)). Assuming that x(t) and y(t) are smooth,

(a) Consider the part of the surface covered by σ : R2 → R3, σ(x, y) =
(cos(x), sin(x), y) and consider the curve γ(t) = (0, 0, t). Note that
it lies on the surface. Write it in the form, γ(t) = σ(x(t), y(t)) by
finding suitable functions x(t) and y(t). Do the same for the curve
γ2(t) = (cos(t),− sin(t), 0) which also lies on the surface.

(b) Show that

γ̇(t0) = x′(t0)σx(x(t0), y(t0)) + y′(t0)σy(x(t0), y(t0))
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4. Show that σx(x0, y0) and σy(x0, y0) are each velocity vectors of curves
that lie on the surface. Why are they linearly independent?

5. Why do the previous two exercises show that σx(x0, y0) and σy(x0, y0) are
a basis for the tangent vectors?

6. Compute n̂(p) for any point p on a plane. Show that it is constant.

7. Compute n̂(p) for any point p on a sphere.

8. Consider a point p on the part of the surface covered by a surface patch.
Therefore, it is of the form p = σ(x0, y0) for some x0 an y0. Consider

n̂(p) =
σx(x0, y0)× σy(x0, y0)

‖σx(x0, y0)× σy(x0, y0)‖

which is a vector in R3 based at p.

(a) Is it a tangent vector? Why or why not?

(b) Why is its dot product with σx(x0, y0) and σy(x0, y0) zero?

(c) Why is its dot product with any tangent vector (of the surface at p)
zero?

9. Consider a smooth function from the surface to R, f : S → R. Show
that the rate of change along any parametrization γ, i.e. d

dt |t=t0f(γ(t)))
depends on the partial derivatives of f at the point γ(t0) and the velocity
of γ at t0. (Hint: This is just a way of interpreting chain rule)

10. Consider ˆ̃n(x, y) = n̂(σ(x, y)). Note that if p = σ(x, y), then ˆ̃n(x, y) =

n̂(p), i.e. ˆ̃n is simply n̂ written in terms of the coordinates provided by σ.

Note also that if γ(t) = σ(x(t), y(t)), then ˆ̃n(x(t), y(t)) = n̂(γ(t)).

(a) Show that the rate of change of n̂ along a parametrization γ of a
curve on the surface (i.e. d

dt |t=t0 n̂(γ(t)))) depends only on n̂ at the
point γ(t0) and the velocity of γ at t0. (Hint: Apply the previous

exercise to each coordinate of the function ˆ̃n. Why is it important
to use ˆ̃n and not n̂?)

11. From now on, we will assume that γ is a unit speed parametrization. Show
that γ̈(t0).n̂(γ(t0)) = −γ̇(t0). ddt |t=t0 n̂(γ(t)). Along with the previous ex-
ercise, this shows that the component of the acceleration in the direction
of the normal, (denoted κn(t0)) depends only on the normal to the surface
and the direction of a unit speed parametrization.

12. Consider the other component of the acceleration, γ̈(t0)− γ̈(t0).n̂(γ(t0)).
Why is γ̈(t0) perpendicular to n̂(γ(t0))? Why is γ̈(t0) parallel to T(t0)×
n̂(γ(t0))? Let the magnitude be denoted by κg(t0)

13. Show that κ2(t0) = κ2n(t0) + κ2g(t0). (Hint: T(t0), n̂(γ(t0)), and T(t0) ×
n̂(γ(t0)) form an orthonormal basis in R3. Use the previous exercise.)
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Applications of the Inverse Function Theorem

NOTE: This topic is a bit more advanced, however, luckily, you should be
able to follow the rest of the course even if you do not understand the concepts
covered in this section of the exercise set. In this course, the inverse function
theorem is used only to justify smoothness of certain functions so that we are
permitted to differentiate as much as we like. While it is certainly in the syllabus,
since it is a an isolated and more difficult topic, it is better to worry about it
only if you have understood the other more basic and more widely used concepts
that are covered in the previous section of this exercise set.

1. Let σ1 : U1 → S and σ2 : U2 → S denote two regular surface patches that
cover exactly the same part of the surface.

(a) Let πxy(x, y, z) = (x, y), πyz(y, z) = (x, y), and πxz(x, z) = (x, y)
denote the three projections obtained by dropping one of the coor-
dinates. Show that the regularity of σ1 at some point p implies that
the Jacobian of F1(x, y) := π(σ1(x, y)) is invertible, where π denotes
one of these three projections.

(b) Show that the projection, π, from the previous exercise is injective
when restricted to small enough neighbourhood of p.

(c) Let F2(x, y) := π(σ2(x, y)). Show that Φ(x, y) = σ−11 (σ2(x, y)) =
F−11 (F2(x, y)).

(d) Why is F−11 smooth? Therefore, why is Φ smooth?

2. We have already discussed that for a parametrization, γ, of a curve on a
surface, γ(t) = σ(x(t), y(t)). Show that x(t) and y(t) are smooth functions.
(Hint: Observe that (x(t), y(t)) = σ−1(γ(t)). Use the “right” projection
just as in the previous exercise to express this composition as a more
convenient composition.)
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