
Exercise sheet 2

Curves and Surfaces, MTH201

1. In an earlier exercise you found the parametrization of a line segment join-
ing two points. Use that parametrization to find the arc length of the line
segment in terms of its end points. Try with some other parametrization
too.

2. These steps will show that the line segment joining two points is the
shortest possible curve joining the two points:

(a) Show that v.w ≤ ‖v‖‖w‖ for any two vectors v and w

(b) Show that ‖v‖ = v. v
‖v‖ . This provides another way to obtain the

norm of a vector: take its dot product with a unit vector in the same
direction.

(c) The previous part shows that ‖γ(t1)−γ(t0)‖ = (γ(t1)−γ(t0)). γ(t1)−γ(t0)‖γ(t1)−γ(t0)‖ .

Now use the fundamental theorem of calculus to (carefully!) prove

that ‖γ(t1)− γ(t0)‖ =
∫ t1
t0
γ̇(t). γ(t1)−γ(t0)‖γ(t1)−γ(t0)‖dt

(d) Use the previous and first part to prove that ‖γ(t1) − γ(t0)‖ ≤∫ t1
t0
‖γ̇(t)‖dt. Note that this shows that the distance between the

end points is always less than or equal to the arc length of a curve
joining the two end points.

3. If a parametrization γ : (α, β)→ R3 satisfies the condition that ‖γ̈(t)‖ = 0
for all t, what kind of curve will it trace out?

4. If a parametrization γ : (α, β) → R3 satisfies the condition that γ̈(t) is
constant, what kind of curve will it trace out?

5. For a regular plane curve parametrized by γ(t), the curve parametrized
by γc(t) := γ(t) + cNs(t) for some fixed number c, is said to be ”parallel
to the curve parametrized by γ(t)”.

(a) What is the curve parallel to a circle of radius r?

(b) Prove that the γ̇c(t) is a scalar multiple of γ̇(t).

(c) Compute the signed curvature of γc(t) in terms of the signed curva-
ture fuction, k(t), for γ. You will need to assume that k(t) 6= 1/c.
Hint: Just as in the previous exercise, it may be useful to express
γ̈c(t) in terms of Ns(t) and T(t), where Ns(t) and T(t) are the unit
normal and unit tangent vectors, respectively, of γ(t) and compute
the coefficients by taking the dot product with appropriate vectors.
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6. If a curve parametrized by γ has signed curvature function κs(t), what is
the signed curvature of the curve parametrizaed by cγ(t), where c is some
constant?

7. Consider a (plane) curve parametrized by unit speed parametrization γ :
(a, b) → R2 and a point on that curve p = γ(t0). We will find a circle
which best approximates the curve at p, in the sense defined below. This
will give another perspective on curvature. To solve this exercise, you need
to be familiar with using derivatives to find out local maxima or minima.

(a) Prove that if a circle is tangent to the curve defined by γ at p (”tan-
gent” means that the circle touches the curve and the circle’s tangent
line and the curve’s tangent line are the same at p), then its center
must lie on the line containing the vector Ns(t). For this and the
part below you may assume that a normal line of a circle contains its
center.

(b) For some real number r, let Cr denote the circle of radius |r|, with
its center at the point p + rNs(t). Why is it tangent to the curve
at p? Note that Cr divides the plane into an interior and exterior
component and r may be negative, in which case the center is in a
direction opposite to Ns(t).

(c) Prove that a point γ(t) avoids the interior component of Cr if and
only if d(t) := ‖γ(t) − (p + rN(t))‖2 ≥ r2 and avoids the exterior
component if and only if d(t) ≤ r2 (it always intersects the circle at
p, so at t0 you get r2). The square is only to allow us to express
it as a dot product. Since d(t) always positive, taking the square is
harmless.

(d) We say that Cr is too small if, at least in the vicinity of p, every
point on the curve defined by γ avoids the interior of Cr, i.e. there
is an ε so that for any t inside the interval (t0− ε, t0 + ε), γ(t) avoids
the interior of Cr. Use the previous part to rewrite this in terms of
the function d(t), which is defined above. Why does that mean that
d has a local minimum at t0? Remember that a function has a local
minimum at t0 if for t *in the vicinity* of t0, f(t) ≥ f(t0)

(e) We say that Cr is too big if, at least in the vicinity of p, every point
on the curve defined by γ avoids the exterior of Cr, i.e. there is an
ε so that for any t inside the interval (t0 − ε, t0 + ε), γ(t) avoids the
exterior of Cr. Use the previous part to rewrite this in terms of the
function d(t), which is defined above. Why does that mean that d
has a local maximum at t0?

(f) Prove that no matter what r is, d′(t0) = 0. (By now you should be in
the habit of expressing such derivatives in terms of that orthonormal
basis Ns(t) and T(t) so that you can easily identify which coefficients
cancel).

(g) Remember that a function f has a local maximum at t0 if f ′(t0) = 0
and f ′′(t0) < 0; it has a local minimum at t0 if f ′(t0) = 0 and
f ′′(t0) > 0. Compute d′′(t) and use parts d) and e) above to show
that Cr would be too big if r > 1/κ(t0) and too small if r < 1/κ(t0).
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Therefore, a circle of radius 1/κ(t0) may be thought of as best ap-
proximating the curve at p. Such a circle is called an osculating circle
and its radius is 1/κ(t0) is called the radius of curvature.

8. Let γ : (α, β) → R2 be a regular unit speed parametrization of space
curves. As with plane curves, we can define T(t) := γ̇(t).

For a plane curve, there are only two unit vectors normal to T(t) for a
given t, but now there are infinitely many (why?). So for space curves, we
choose the “normal” in the direction of the acceleration:

(a) Assume that the (ordinary, not signed) curvature, κ(t) 6= 0 for all t.

Show that N(t) := γ̈(t)
κ(t) = Ṫ

‖Ṫ‖ is a non-zero unit vector orthogonal

to T(t). Why is N(t) smooth?

(b) Define B(t) := T(t)×N(t). Prove that B(t) is perpendicular to both
T(t) and N(t). Why is it smooth?

(c) By the previous part, {T(t),N(t),B(t)} form an orthonormal basis.
So,

Ṫ(t) = xT (t)T(t) + yT (t)N(t) + zT (t)B(t)

for some xT (t), yT (t), zT (t). What are these coefficients, xT (t), yT (t), zT (t)?
This should be straightforward (follows from part 1).

(d) Similarly,

Ṅ(t) = xN (t)T(t) + yN (t)N(t) + zN (t)B(t)

for some xN (t), yN (t), zN (t). What are the coefficients, xN (t) and
yN (t)? zN (t) will need to be done later. (Hint: As with plane
curves, figuring out the coefficient involves taking an appropriate
dot product. Sometimes, product rule may help you to shift the
derivative and relate it with a known dot product. Remember that
unit vector fields are orthgonal to their derivatives!)

(e) Similarly,

Ḃ(t) = xB(t)T(t) + yB(t)N(t) + zB(t)B(t)

for some xB(t), yB(t), zB(t). Show that xB(t) = 0 and zB(t) = 0. In
other words Ḃ(t) is always a scalar multiple of N(t) (which is denoted
yB(t) above).

(f) Show that yB(t) = −zN (t). So the only two unknown coefficients are
negatives of each other! Let us denote −yB(t) by τ(t) (the negative
sign is only a convention and simplifies some notation later). τ(t) is
a new term that cannot be written in terms of known terms like the
curvature etc and is called the “torsion” at t. We have shown that
the derivatives of T(t), N(t), and B(t) can be written in terms of
the basis {T(t),N(t),B(t)} and the coefficients depend only on the
curvature or the torsion.

9. Prove that the torsion τ(t), defined in the previous question, of a curve is
the constant 0 if and only if the curve lies on a plane.
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10. If v1(t),v2(t),v3(t), denote some vector fields which are not necessarily
T(t),N(t),B(t), but nevertheless satisfy the same equations:

v̇1 = κ(t)v2(t)

v̇2 = −κ(t)v1(t) + τ(t)v3(t)

v̇3 = −τ(t)v2(t)

Show that vi(t).vj(t) are constant for any i, j (Hint: Product rule, of
course!). So, the angles and magnitudes remain the same for all t. We
will see the significance of this exercise during the lecture.

11. Let v(t) denote a unit vector field. Prove that there is always a unit speed
parametrization, γ so that γ̇(t) = v(t).

12. Consider two parametrizations, γ1 : (α, β) → R3 and γ2 : (α, β) → R3

(note that they have the same domains). Denote the unit tangent, unit
normal, and unit binormal of γ1 by T1(t), N1(t), and B1(t). Similarly,
denote the unit tangent, unit normal, and unit binormal of γ2 by T2(t),
N2(t), and B2(t). Assume also that both parametrizations have exactly
the same curvature and torsion at t, i.e. κ(t) and τ(t) and t. Show that
the expression T1(t).T2(t) + N1(t).N2(t) + B1(t).B2(t) is constant.
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