Exercise sheet 7

Curves and Surfaces, MTH201

For all these questions, $\hat{\mathbf{n}}(p) := \sigma_x(p) \times \sigma_y(p)$

- 1. Prove that $\hat{\mathbf{n}}(\gamma(t))$ is perpendicular to $\mathbf{T}(t)$.
- 2. Prove that $\mathbf{N}(t) = \hat{\mathbf{n}}(t)$ if and only if $\kappa_q(t) = 0$
- 3. Prove that the area can be expressed entirely in terms of the first fundamental form.

$$A_{\sigma}(R) = \int_{R} \sqrt{E(x,y)G(x,y) - F^{2}(x,y)} dxdy$$

- 4. How does the matrix of the first fundamental form vary with a coordinate transformation?
- 5. Prove that if the surface patch is regular then the matrix of the first fundamental form is invertible.
- 6. Recall the definition of $D_p(f): T_p(S) \to T_p(S)$
 - (a) Show that $D_p(Id_S) = Id_{T_p(S)}$
 - (b) Show that $D_p(f\circ g)=D_p(f)\circ D_p(g)$ where $g:S_1\to S_2$ and $f:S_2\to S_3$ are smooth functions between surfaces.
 - (c) Prove that if f is smooth with a smooth inverse, then $D_p(f)$ is invertible.
- 7. Prove that $W\mathbf{v}.\mathbf{w} = W\mathbf{w}.\mathbf{v}$