Exercise sheet 1

Curves and Surfaces, MTH201

1. Find a parametrization $\gamma(t)$ for a line segment joining two given points $\left(x_{1} . y_{1}\right)$ and $\left(x_{2} . y_{2}\right)$. Find $\dot{\gamma}(t)$.
2. What does the parametrization trace out $\gamma(t)=\left(\frac{2 t}{1+t^{2}}, \frac{1-t^{2}}{1+t^{2}}\right)$?
3. Show that the parametrization $\gamma(t):=\left(t^{2}-1, t\left(t^{2}-1\right)\right)$ is not injective, i.e. there are two distinct real numbers t_{1} and t_{2} so that $\gamma\left(t_{1}\right)=\gamma\left(t_{2}\right)$. Can you deduce the shape ${ }^{1}$ of this curve? Can you express the set of points defined by this curve as the zero set ${ }^{2}$ of some function $f(x, y)$?
4. For $\mathbf{v}:(\alpha, \beta) \rightarrow \mathbf{R}^{2}$ and $\mathbf{w}:(\alpha, \beta) \rightarrow \mathbf{R}^{2}$, show that $(\mathbf{v}(t) \cdot \mathbf{w}(t))^{\prime}=$ $\mathbf{v}^{\prime}(t) \cdot \mathbf{w}(t)+\mathbf{v}(t) \cdot \mathbf{w}^{\prime}(t)$.
5. If $\mathbf{n}:(\alpha, \beta) \rightarrow \mathbf{R}^{2}$ is such that $\|\mathbf{n}(t)\|$ is constant, then prove that $\dot{\mathbf{n}}(t)$ is either 0 or perpendicular to $\mathbf{n}(t)$.
6. if we denote,

$$
\begin{aligned}
& s_{\alpha}(t):=\int_{t_{\alpha}}^{t}\|\dot{\gamma}(u)\| \mathrm{d} u \\
& s_{\beta}(t):=\int_{t_{\beta}}^{t}\|\dot{\gamma}(u)\| \mathrm{d} u
\end{aligned}
$$

prove that $s_{\beta}(t)-s_{\alpha}(t)$ is a constant (assume that $t_{\alpha}<t_{\beta}$).
7. If $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$ is a smooth and regular parametrization, then show that $\|\dot{\gamma}(t)\|:(\alpha, \beta) \rightarrow \mathbb{R}$ is smooth.
8. For the parametrization $\gamma:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}^{2}$ given by $\gamma(t)=(5 \cos (t), 5 \sin (t))$,
(a) Find the arc-length function $s(t)$ (starting at, say, 0)
(b) Find a reparametrization $\operatorname{map} \phi$ so that $\gamma(\phi(t))$ is a unit-speed parametrization.

[^0]
[^0]: ${ }^{1}$ Just a rough drawing showing where the curve intersects the axes and where it selfintersects etc.
 ${ }^{2}$ The zero set of a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is $\{(x, y) \mid f(x, y)=0\}$, i.e. the set of points (x, y) in the plane for which $f(x, y)=0$

