Remember that the normal curvature of a curve is owing to a component of the acceleration



that keeps the curve on the surface.



We will try to understand the curvature of a surface by the normal curvature it forces on curves that lie on it.




Product rule helps us shift the derivative



Therefore, k, can actually can be expressed in terms of



The derivative of i along v and its velocity (rather than its acceleration)



Let us examine the derivative of i more closely



k= 0(y(1))A(t) = — (30 (v(1)))F(?)

AN

Il(:lj, Y, Z) - <n1<x7 Y, Z)? n2($7 Y, Z)? n3($7 Y, Z))

Writing the coordinates of i more explicitly



A(t) = —(gn(v(t))-3 ()

(CE’, Y, Z>7 nQ(:Ey Y, Z>7 n3($7

—

%))
t

And same for v and the composition of the two



= —(Ea(y(1)A0)

We can differentiate a vector valued function coordinate-wise



)2-?(15) = —(gm(v(1))5(?)

Chain rule tells allows us to express it in terms of the partial derivatives of n;



)2-?(& = —(gm(v(1))5(?)

n(y(t)) = (ny(z(t), y(t), 2(1)), nalx(t), y(t), 2(t)), n(x(t), y(t), 2(1)))
= (n1, 2+ ny +ni2,
N2, + Noyy +no.2,
N3, & + ng,y + ns,z)

and the coordinates of the ~y



o = A1) A() = — (S0 (5) A
fl(ZC,y, Z) - (nl(x,y,z),ng(x,yyz),ng(x,yyz))
n(y(t)) = (n(x(t),y(t), 2(¢)), na(@(t), y(t), 2(t)), ns(x(t), y(t), 2(2)))

n(y(t)) = (ny(z(t), y(t), 2(1)), nalx(t), y(t), 2(t)), n(x(t), y(t), 2(1)))
= (n1, 2+ ny +ni2,
N2, + Noyy +no.2,
N3, & + ng,y + ns,z)

/

Nigz N1y N1y 2

= | M2z N2y N2, Y
/

N3z N3y N3 <

~

This can easily be arranged as a product of two matrices



o = A1) A() = — (S0 (5) A
fl(ZC,y, Z) - (nl(x,y,z),ng(x,yyz),ng(x,yyz))
n(y(t)) = (n(x(t),y(t), 2(¢)), na(@(t), y(t), 2(t)), ns(x(t), y(t), 2(2)))

n(y(t)) = (ny(z(t), y(t), 2(1)), nalx(t), y(t), 2(t)), n(x(t), y(t), 2(1)))
= (n1, 2+ ny +ni2,
N2, + Noyy +no.2,
N3, & + ng,y + ns,z)

/

Nigz N1y N1y 2

= | M2z N2y N2, Y
/

N3z N3y N3 <

= J(0)5y(?)

~

The 3 x 3 matrix is our familiar Jacobian (but this time for 3-dimensions)




ki = 0(y () A(t) = —(Fn(y(t) ()
ﬂ<xayaz> - (nl(x,y,z),ng(x,y,z) 713(:6 Yy Z))
n(y(t)) = (ni(z(t),y(t), 2(t), na(x(t), y(t), 2(¢)), ns(z(t), y(t), 2(1)))

(1) = (i (a(), y(1), 2(1)), ma(a(1), y (1), (1)), m3( (1), y (1), 2(2)))
= (n1, 2+ ny +ni2,
N2, + Noyy +no.2,
N3, & + ng,y + ns,z)

Nigz N1y N1y '
= | N2g N2y N2, y

N3z N3y N3 z
= J(0)3(t)

W : T,(S) — R? is a linear transformation

Therefore, we can define a linear transformation



ki = A(y(1) A(t) = —(ga(y(1)) ()
fl(:l}, Y, Z) - <n1<337 Y, Z)? n2($7 Y, Z)? 77,3(56, Y, Z))
n(y(t) = (ni(x(t), y(t), 2(¢)), na(@(t), y(t), 2(¢)), na(x(t), y(t), 2(¢)))

(1) = (i (a(), y(1), 2(1)), ma(a(1), y (1), (1)), m3( (1), y (1), 2(2)))
= (n1, 2+ ny +ni2,
N2, + Noyy +no.2,
N3, & + ng,y + ns,z)

/
Nigz N1y N1y 2
/
= | M2z N2y N2, Y
/
N3z N3y N3 <
= J(A)5(t)

W : T,(S) — R? is a linear transformation

The above matrix form shows that it depends only on the velocity of the curve



ki = A(y(1) A(t) = —(ga(y(1)) ()
fl(:l}, Y, Z) - <n1<337 Y, Z)? n2($7 Y, Z)? 77,3(56, Y, Z))
n(y(t) = (ni(x(t), y(t), 2(¢)), na(@(t), y(t), 2(¢)), na(x(t), y(t), 2(¢)))

(1) = (i (a(), y(1), 2(1)), ma(a(1), y (1), (1)), m3( (1), y (1), 2(2)))
= (n1, 2+ ny +ni2,
N2, + Noyy +no.2,
N3, & + ng,y + ns,z)

/
Nigz N1y N1y 2
/
= | M2z N2y N2, Y
/
N3z N3y N3 <
= J(A)5(t)

W : T,(S) — R? is a linear transformation

Remember that a vector is defined as a velocity vector of a curve on the surface



ki = 0(y(1))A(t) = —(FR(v(1))) ()

fl(:l}, Y, Z) - <n1<337 Y, Z)? n2($7 Y, Z)? 77,3(56, Y, Z))

n(y(t)) = (n(x(t),y(t), 2(¢)), na(@(t), y(t), 2(t)), ns(x(t), y(t), 2(2)))
%ﬁﬁ(t)) = (ny(z(t), y(t), 2(1)), na(x (), y(t), (1)), na(2(t), y(t), 2(1)))

/ / /

— (nlajx - niyY T Ni,2,
/ / /

N2 T + n2yy T N2,
/ / /

N3 T + N3y Y + N3, 2 )

/
Nigz N1y N1y 2
/
= | M2z N2y N2, Y
/
N3z N3y N3 <
= J(A)5(t)

W : T,(S) — R? is a linear transformation

The linear transformation maps it to the velocity vector of the image of the curve under n



ki = 0(y(1))A(t) = —(FR(v(1))) ()

fl(:l}, Y, Z) - <n1<£E7 Y, Z)? 712(56, Y, Z)? 77,3(56, Y, Z))

n(y(t)) = (n(x(t),y(t), 2(¢)), na(@(t), y(t), 2(t)), ns(x(t), y(t), 2(2)))
iﬁ(’V@)) = (ny(z(t), y(t), 2(1)), na(x (), y(t), (1)), na(2(t), y(t), 2(1)))

/ / /

— (nlajx - niyY T Ni,2,
/ / /

N2 T + n2yy T N2,
/ / /

N3, T + N3,y + n3.2')

/
Nigz N1y N1y 2
/
= | M2z N2y N2, Y
/
N3z N3y N3 <
= J(A)5(t)

And the matrix form tells us that the curve may be replaced with any other curve with the same velocity vector



)2-?(& = —(gm(v(1))5(?)

n(y(t)) = (ny(x(t),y(t), 2(t)), na(z(t), y(t), 2(t)), ns(x(t), y(t), 2(1)))
= (n1a’ + nlyy, +ny.2,
No, &' + nayy + no. 2,
N3, + ng,y' + ng.2')

/

Nig N1y N1y L

/

= | M2z N2y N2, Y
/

N3z N3y N3y <

= J(0)5y(?)

Finally, we get a useful expression in terms of the normal curvature



ki = 0(y () A(t) = —(Fn(y(t) ()
ﬂ<$ayaz> - (nl(x,y,z),ng(x,y,z) n3($ Yy Z))
n(y(t)) = (n(x(t),y(t), 2(t)), na(x(t), y(t), 2(t

Z0(t) = (R (z(t), y(t), 2(t)), na(z(t), y(t), 2(t)), n
= (n1a’ + nlyy, +ny.2,
No, &' + nayy + no. 2,
N3, + ng,y' + ng.2')

/

Nig N1y N1y L

/

= | M2z N2y N2, Y
/

N3z N3y N3y <

= J(0)5y(?)

Notice the entire formula for the normal curvature depends only on the velocity of the curve

/
3

), na(z(t), y(t), 2(1)))

(x(t), y(t), 2(t)))



Ko = 0(y(t)).A(t) = —(Fay(t))).5(t)
n(x,y,z) = (ni(x,y, 2),no(x,y, 2), n3(x,y, 2)
n(y(?)) = (ni(z(t), y(t), 2(¢)), na(x(t), y(t), 2(

), na(z(t), y(t), 2(1)))

(1) = (0 (x(t), y(2), 2(1)), my(w (1), y(t), 2(1)), mh( (), y(1), ()

/ / /

— (nlxx -+ niyY + N2,
/ / /

N2, T + n?yy + N2, 2,
/ / /

N3, T + N3,y + n3.2')

Nigy N1y N1, '
= | N2y N2y N2, y

N3z N3y N3y Z
= J(0)5(?)

W : T,(S) — R is a linear transformation
W(v) = —3n(y(t)), where v = (1)
=W(i() ()

This makes intuitive sense, since the normal curvature is owing to the surface



ki = A(y(1) A(t) = —(ga(y(1)) ()
fl(:l}, Y, Z) - <n1<337 Y, Z)? n2($7 Y, Z)? 77,3(56, Y, Z))
n(y(t) = (ni(x(t), y(t), z(t)), na(x(t), y(t), z(t

Z0(t) = (R (z(t), y(t), 2(t)), na(z(t), y(t), 2(t)), n
= (n1a’ + nlyy, +ny.2,
No, &' + nayy + no. 2,
N3, + ng,y' + ng.2')

/
Nig N1y N1y L
/
= | M2z N2y N2, Y
/
N3z N3y N3y <
= J(n)j(t)

Any other curve on the surface whose velocity vector is in the same direction will have the same &,

/
3

), na(z(t), y(t), 2(1)))

(x(t), y(t), 2(t)))



As we have done often, we will use product rule to exploit ||a]| = 1



Product rule tells us that the derivative is perpendicular to the normal






And therefore, belongs to the tangent space



e B
I
= =

=SS ==

Since W is linear, we just need to find out what it does to the basis, o, and o,




But the basis vectors are also velocity vectors of certain curves




n(y(¢)).n(y(t) =1

§n(y(t)n(y(t) =0

W((t)).n(y(t)) =0

W(H(t)) =10, +170,

W(o,) = —%ﬁ(a(t,yo)) = —(hoo), = —1,
Wie,) = —dalo(an,t) = —a,

—n, = ao, + bo,

—1n, = co, +doy,

These just work out to be the partial derivative of fi in terms of the coordinates given by the patch



n(y(¢)).n(y(t) =1

§n(y(t)n(y(t) =0

W((t)).n(y(t) =

W(H(t)) =10, +170,

W(o,) = —%ﬁ(a(t,yo)) = —(hoo), = —1,
Wia,) = —a(o(eo, ) = -,

This time, the basis o,, 0,,  are not orthogonal




iy (6) A(D) = 1
§n(y(t)n(y(t) =0

W((t)).n(y(t) =

W(H(t)) =10, +170,

W(o,) = —%ﬁ(a(t,yo)) = —(hoo), = —1,
Wia,) = —a(o(eo, ) = -,

n is orthogonal to the other too, and this can be used



n(y(t)).n(y(t)) =1

Sn(y(t)n(y(t) =0

W((t))n(y(t)) =0

W((t)) =170,+770,

W(o,) = —%ﬁ(a(t,yo)) = —(hoo), = —1,
W(o,) = —$hi(o(20, 1)) = —1,

—n, = co, + doy,

—1,.0; = C0,.0; + doy,.0,

We proceed in the usual manner to figure out coeflicients but this time we do not have as many 0s



n(y(t))n(y(t)) =1

Sn(y(t)n(y(t) =0

W((t)).n(y(t) =

W(H(t)) =10, +170,

W(o,) = —%ﬁ(a(t,yo)) = —(hoo), = —1,
Wia,) = —a(o(eo, ) = -,

—n, = ao, + bo,
—1n, = co, +doy,
—1N,.0,; = 40,.0, + boy,.0,
—1,.0; = C0,.0; + doy,.0,
—1,.0, = €0;.0, + do,.0y
—1,.0, = a40,.0y + bo,.0,

Nevertheless, we have found 4 relations for the 4 unknowns



n(y(t))n(y(t) =1
Sa(vy(t)a(y(t) =0
W((t))n(y(t) =

W(H(t)) =10, +170,

W(o,) = —$i(o(t,y)) = —
W(o,) = —i(o(zo, t) = —

—n, = co, + doy,

Writing it in matrix form



T EF A
maOR0w) ~0 (r o) (00)- (R 2)
e e N (N (P N )

—1n, = ao, + bo,
—n, = co, + doy,

—1,.0; = C0,.0; + doy,.0,

We are able to express the coefficients in terms of the first fundamental form and some new terms



T EF A
Baoa0w) 0 (r o) (00) - (G 2)
e e N (N (P N )

—1N,.0, = C0,.0; + do,.0,

Product rule allows us to rewrite these new terms of (second order) partial derivatives of the patch




A(3(0)2 (1)) = 1

) (7 ) ()= (5 5)
J(t))a(y(t)) = i

w x:_iA t = —(n x::_Ax — N N

ng ; _ _EEEZ&; y%)) _ _;nog) . a b\ (B F\ ' (—h.0, —0,.0,
R cd) “\rac) \-n.o —no

_f“fwﬁs% _(E F\' (ho, Doy,

Ty T 9T oy - \F G N.0, 1N.0y,

rather than differentiating n



%ﬁ%;‘f%jj ¥ E F\ (ab —N,.0, —N,.0,
mgiiiﬁfﬂ?& (F G> <C d) - <—flx-0y —ﬂz-ay)
R N () I I e

E F
(¥ ¢
_I}x = a0, +boy EF\ " N.0;,; N.Oy,
iy = cowdoy - (F G) (ﬂ.axy ﬁ.ayy)
—1N,.0,; = 40,.0, + boy,.0, o5
—1,.0; = C0,.0; + doy,.0, = (F o
—1,.0, = €0;.0, + do,.0y
—1,.0, = a40,.0y + bo,.0,

These new terms are denoted L, M, and N and are called the second fundamental form




%ﬁ”}fﬁig‘;‘f&ﬁ ¥ E F\ (ab —N,.0, —N,.0,
mgiiiﬁfﬂ?gy (F G> (C d) - <—flx-0y —ﬂz-ay)
S e N ) N (A N e

E F
(¥ ¢
1, = a0, + bo, £ F\ ' N.0;,; N.Oy,
—1n, = co, +doy, — (F G) (ﬂ.aw ﬁ.ayy)
—1N,.0,; = 40,.0, + boy,.0, o5
—1,.0; = C0,.0; + doy,.0, = (F o
—1,.0, = €0;.0, + do,.0y
—1,.0, = a40,.0y + bo,.0,

Note that for any smooth function f,, = f,.



%&%ﬁ&%;; ¥ EF\ (ab —,.0, —N,.0,
mgiﬁi%f)?gy (F G> (C d) - <—flx-0y —ﬂz-ay)
M- o a (D) (EE) (e e

E F

F G

AN - _1 ) /\
1, = a0, + bo, E F N.0y; N.Oy,
—n, = co, + doy, =7 c fon o,
—1N,.0,; = 40,.0, + boy,.0, o5
—1,.0; = C0,.0; + doy,.0, =\ rc

That 1s why M = 0, = 04y



%&%ﬁ&%;; ¥ EF\ (ab —,.0, —N,.0,
WOLE) =0+ 7o, (o) (ca) = (s %)
M- o a (D) (EE) (e e

N.0, 1N.0y,
—1N,.0,; = 40,.0, + boy,.0,
—1,.0; = C0,.0; + doy,.0, =
—1,.0, = €0;.0, + do,.0y
—1,.0, = a40,.0y + bo,.0,

(E F
F G
—n, = a0, + bo, E F\ ' /(fo,, o
—1n, = co, +doy, — (F G) ( T yw)
E F
(F ¢

We now introduce the counterpart in surfaces to Frenet-Serret in curves




n(y(t))n(y(t) =1

S (y(t).n(y(t)) =0
W((t))n(y(t) =

W(H(t)) =10, +170,

W(o,) = —$i(o(t,y)) = —
W(o,) = —i(o(zo, t) = —

—n, = co, + doy,

—1,.0; = C0,.0; + doy,.0,

Frenet-Serret told us how to express the derivatives of convenient basis vector fields in terms of the same basis

E F a b\ (-n,o, —n,o,
F G cd) \—-n,o, —n,o,
—1 . .
—1,.0, —1,.0,
) <_ﬁx'0y _ﬁy°0y>

E F
F G
_(E F ! N.0,, N.0y,,
- \F G N.0,, N.0y,
E F\
F G



%ﬁ%;‘f%jj ¥ EF\ (ab\ (-0 —0,0,
W) oo (re) (o) = (o o)
e () =(EE) ()

N.0, 1N.0y,
—1N,.0,; = 40,.0, + boy,.0,
—1,.0; = C0,.0; + doy,.0, =
—1,.0, = €0;.0, + do,.0y
—1,.0, = a40,.0y + bo,.0,

E F
(* ¢
—n, = a0, + bo, E F\ ' /(fo,, o
—1n, = co, +doy, — (F G) ( T yx)
E F
(F ¢

Here we find the derivatives of the basis vectors {o,, 0, 0} in terms of o,,0,,




n(y(t))n(y(t) =1
Sa(vy(t)a(y(t) =0
W((t))n(y(t) =

W(H(t)) =10, +170,

W(o,) = —$i(o(t,y)) = —
W(o,) = —i(o(zo, t) = —

—n, = co, + doy,

E F a b\ (-n,o, —n,o,
F G cd) \—-n,o, —n,o,
—1 . .
—1,.0, —1,.0,
) <_ﬁx'0y _fly°0y>

E F
F G
_(E F ! N.0,, N.0y,,
- \F G N.0,, N.0y,
E F\
F G

The derivatives of nn were already found.



%ﬁ%;‘f%jj ¥ EF\ (ab\ (-0 —0,0,
W) oo (re) (o) = (o o)
e () =(EE) ()

N.0, 1N.0y,
—1N,.0,; = 40,.0, + boy,.0,
—1,.0; = C0,.0; + doy,.0, =
—1,.0, = €0;.0, + do,.0y
—1,.0, = a40,.0y + bo,.0,

(E F
F G
—n, = a0, + bo, E F\ ' /(fo,, o
—n, = co, + doy, — (F G) ( T yx)
E F
(F ¢

The a, b, ¢, d that we just found out were precisely those coeflicients.



n(y(t)).n(y(t)) =1
Sa(y(t).n(y(t)) =0
W(§(1))n(y(t)) =

W(H(t)) =10, +170,

W(o,) = —Si(o(t, yo)) = —
W(o,) = —Sii(o(20, 1) = —

—n, = co, + doy,

(

_ﬂx.o-x _f].y.o-aj

E F
F G
EF\ " N.0,, N.0y,,
F G N.0, 1N.0y,
E F
F G

)

Opy =0 10,+ 70, + L
Opy =10+ 170, + Mn
Oy =10+ 10, + N

We now know some coeflicients



n(y(t))n(y(t) =1
Sa(vy(t)a(y(t) =0
W((t))n(y(t) =

W(H(t)) =10, +170,

W(o,) = —$i(o(t,y)) = —
W(o,) = —i(o(zo, t) = —

—n, = co, + doy,

E F\ (a b\ (-n,0, —n,0,
F G cd) \—-n,o, —n,o,
(hoo), :=—n, _q A A
a a by (LK F —1,.0, —N,.0,
Y cd/] \F QG —n,.0, —N,.0,
_(E F ! N.0,, N.0y,,
- \F G N.0,, N.0y,
(EF\ (L M
- \F G M N

0y = 1350, + 15,0, + NAA

The others are called the “Christoffel symbols”



Can the Christoftel symbols be expressed in terms of known quantities?




There are 6 of them so do they appear in 6 relations involving known quantities?




1 2 A

=T E+THF

As usual we do that by taking the dot product with some of the basis vectors




1 2 A~

=T E+THF

E, = (04.04)p = 20:4.0;

However, product rule tells us about o,,.0,



1 2 A~

=T E+THF

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

So we obtain a relation entirely in terms of E, F, G (and their derivatives)




1 2 A~

=T E+THF

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

It may seem we got lucky here because of the double derivative was with respect to the same variable




Opp = F%lax + F;lay + Ln
0,y = Da90s + T390, + N OOy = F%lax.ay -2|— [1,0,.0,+ Lir.o,
=I'n b+ 117G

OppOp = Fhax.ax + F%lay.agj + Ln.o,
=L E+ T3 F Fy = (00.0y)e = Opz.0y+

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

But, we can do the same thing, this time, exploiting the fact that mixed partial derivatives are equal




Opp = F%lax + F;lay + Ln
0,y = Da90s + T390, + N OOy = F%lax.ay —2|— [1,0,.0,+ Lir.o,
=I'n b+ 117G

OppOp = Fhax.ax + F%lay.agj + Ln.o,
=L E+ T3 F Fy = (00.0y)e = Opz.0y+

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

Which gives a relation involving what we want to find out




Opp = F%lax + Filay + Ln
0,y = Da90s + T390, + N OOy = F%lax.ay er [1,0,.0,+ Lir.o,
=I'n b+ 117G

1 2 ~
=T E+12F F, =(0,.0))s = 0400y + 0y - Oy

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

but also another term



Opp = F%lax + F;lay + Ln
0,y = Da90s + T390, + N OOy = F%lax.ay —2|— [1,0,.0,+ Lir.o,
=I'n b+ 117G

1 2 A
=T E+12F F, =(0,.0))s = 0400y + 0y - Oy

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

There is no point making it appear in product rule applied to (0,.0,),



Opp = F%lax + F;lay + Ln
0,y = Da90s + T390, + N OOy = F%lax.ay —2|— [1,0,.0,+ Lir.o,
=I'n b+ 117G

1 2 ~
—TLE+T%F F, =(0,.0))s = 0400y + 0y - Oy

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

The above equation already extracts everything we can from it




Opp = F%lax + F;lay + Ln
0,y = Da90s + T390, + N OOy = F%lax.ay —2|— [1,0,.0,+ Lir.o,
=I'n b+ 117G

1 2 A~

= FhE + F%F Fy = (04.0y)s = 040y + 0y Oy
B, =(0,.04)y = 20,.04,

E, = (04.04)p = 20:4.0;

Therefore,

E,/)2=TE+T}F

But o, - 0y = 0, - 04y because mixed partial derivatives are equal




Opp = F%lax + Filay + Ln
Oyy = Ty + 50, + Nt Oxz-Oy = 11093'09 —2|_ 110y-0y + L0y
=+ 106G

Ory-Op = ]104.0, + 5 0,.0, + Lo,
—TLE+T4F Fy = (04.0y)s = 0000y + 04 - Oy
B, =(0,.04)y = 20,.04,
_ il 2
k= (0x~0x>x = 2042-0g by = Ey/Q =+ 16

Therefore,

E,/)2=TE+T}F

So we finally obtain the relation



1l 2 A
Oy = F%g% i ngay + Nf Opy-Oy = 1 1104.0y +17,0y.0y + LN.O,

=TI}, F+THG

1 2 ~
= F%1E+F%1F Fy = (04.0y)s = 040y + 0y Oy
B, =(0,.04)y = 20,.04,

_ 1l 2
E, = (04.04)p = 20:4.0; F, — E,/2=TF+I},G

Therefore, Proposition. The Christoffel symbols depend only

on the first fundamental form.
E,/)2=TE+T}F

Similarly, we can obtain all the relations and solve



1l 2 A
Oy = F%g% i ngay + Nf Opy-Oy = 1 1104.0y +17,0y.0y + LN.O,

=TI}, F+THG

1 2 ~
= F%1E+F%1F Fy = (04.0y)s = 040y + 0y Oy
B, =(0,.04)y = 20,.04,

_ 1l 2
E, = (04.04)p = 20:4.0; b, — E,2=T,F+T1,G

Therefore, Proposition. The Christoffel symbols depend only

on the first fundamental form.
E,/)2=TE+T}F frst f d

The derivatives of any (tangent) vector field to a surface, can be resolved in two components




1l 2 A
Oy = F%g% i ngay + Nf Opy-Oy = 1 1104.0y +17,0y.0y + LN.O,

=TI}, F+THG

1 2 ~
= F%1E+F%1F Fy = (04.0y)s = 040y + 0y Oy
B, =(0,.04)y = 20,.04,

_ il 2
E, = (04.04)p = 20:4.0; E,—E)2=T1F+17,G

Therefore, Proposition. The Christoffel symbols depend only

on the first fundamental form.
E,/)2=TE+T}F

The component in the direction of the normal, which will depend only on the second fundamental form




1l 2 A
Oy = F%g% i ngay + Nf Opy-Oy = 1 1104.0y +17,0y.0y + LN.O,

=TI}, F+THG

1 2 ~
= F%1E+F%1F Fy = (04.0y)s = 040y + 0y Oy
B, =(0,.04)y = 20,.04,

_ 1l 2
E, = (04.04)p = 20:4.0; b, — E,2=T,F+T1,G

Therefore, Proposition. The Christoffel symbols depend only

on the first fundamental form.
E,/)2=TE+T}F frst f d

The other component is tangent to the surface and will depend only on the first fundamental form.







S0,

Oy = an expression involving second derivatives of o,, 0y, 1

Now that we can all first derivatives in terms of the basis, we can repeatedly do it for others



S0,

A

Oy = an expression involving second derivatives of o,, 0y, 1

A

= an expression in terms of o,, 0y, 0



Opp = Fhax + F%lay + Ln

Opy = [1y0, + F%Qay + Mn
oy = 30, + 5,0, + Nid
S0,

A

Oy = an expression involving second derivatives of o,, 0y, 1

A

= an expression in terms of o,, 0y, 0

But 0,y = oyya

Similarly,

o,y = some other expression involving second derivatives of o,, 0y,



S0,

A

Oy = an expression involving second derivatives of o,, 0y, 1

A

= an expression in terms of o,, 0y, 0

But 0,y = oyya

Similarly,

o,y = some other expression involving second derivatives of o,, 0y,

A

= some other expression in terms of o,,0,,



Opr = 110, + %0, + Lk Equating coeffients,
Ouy = 9o, + o, + M
So, L M

det VN

A

Theorem (Gauss’ Theorem Egregium).

Oy = an expression involving second derivatives of o,,0,, 1
~ can be expressed entirely in terms of the Christoffel

= an expression in terms of o,, 0y, 0 :
symbols (i.e. first fundamental form)

But 0,y = oyya

Similarly,

A

o,y = some other expression involving second derivatives of o,, 0y,

A

= some other expression in terms of o,,0,,



