
Smooth functions

Definition. f : S → R is called a smooth map at p
if,

We will define smooth functions on surfaces
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,

We study the surface using a patch
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),

Which contains p
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ

We view the surface in terms of a patch
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ

Now its domain is a subset of R2
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

so we know what it means to be smooth
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that,

Of course, we need to check that it does not depend on the chosen patch
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth,

This will always happen but we will prove it later
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth,

Let us examine the relationship between f ◦ σ and f ◦ σ̃
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

We know the relationship between the two patches
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Composing with f
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore,

Since the composition of smooth functions is smooth
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

Definition.
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

We now similarly study functions between surfaces via their surface patches

Definition. f : S1 → S2 is said to be a smooth func-
tion
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

Definition. f : S1 → S2 is said to be a smooth func-
tion at p ∈ S1
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

This time there is a surface patch not just for the domain

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

but also for the co-domain

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

This time we also compose by σ−12 so that the the input and output are from U1 and U2, respectively

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

This exercise tells us why the definition does not depend on the choice of patches

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.

Exercise. Show that the definion of a smooth map does
not depend on the choice of parametrizations.

Definition.
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

f naturally defines a map on the tangent spaces as we shall now see

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.

Exercise. Show that the definion of a smooth map does
not depend on the choice of parametrizations.

Definition. Consider a smooth map, f : S1 → S2
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.

Exercise. Show that the definion of a smooth map does
not depend on the choice of parametrizations.

Definition. Consider a smooth map, f : S1 → S2

so that f (p) = q for some p ∈ S1 and q ∈ S2.
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.

Exercise. Show that the definion of a smooth map does
not depend on the choice of parametrizations.

Definition. Consider a smooth map, f : S1 → S2

so that f (p) = q for some p ∈ S1 and q ∈ S2.
Let v ∈ Tp(S1) denote a tangent vector at p.
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

As usual, the tangent vector is a velocity vector of some curve on the surface

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.

Exercise. Show that the definion of a smooth map does
not depend on the choice of parametrizations.

Definition. Consider a smooth map, f : S1 → S2

so that f (p) = q for some p ∈ S1 and q ∈ S2.
Let v ∈ Tp(S1) denote a tangent vector at p.
i.e. v =

.
γ(t0) for some γ : (α, β)→ S1 and t0 ∈ (α, β).
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

We simply consider the velocity vector of the image of that curve

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.

Exercise. Show that the definion of a smooth map does
not depend on the choice of parametrizations.

Definition. Consider a smooth map, f : S1 → S2

so that f (p) = q for some p ∈ S1 and q ∈ S2.
Let v ∈ Tp(S1) denote a tangent vector at p.
i.e. v =

.
γ(t0) for some γ : (α, β)→ S1 and t0 ∈ (α, β).

Define dpf : Tp(S1)→ Tp(S2)
(where Tp(S) denotes the tangent space of S at p)
by dpf (v) = d

dtf (γ(t)) ∈ Tp(S2)
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Smooth functions

Definition. f : S → R is called a smooth map at p
if,
given a (regular) surface patch σ : U → S,
so that p ∈ σ(U), p = σ(x0, y0),
f ◦ σ is smooth at (x0, y0).

If σ̃ : Ũ → S is another surface patch so that, σ̃ = σ◦Φ,
where Φ : Ũ → U is smooth, invertible, and the inverse
is smooth, Since,

σ̃ = σ ◦ Φ

f ◦ σ̃ = f ◦ σ ◦ Φ

Therefore, f ◦ σ smooth =⇒ f ◦ σ̃ is smooth (because,
f ◦ σ and Φ are smooth)

and define that to be the image of v under dpf

Definition. f : S1 → S2 is said to be a smooth
function at p ∈ S1 if, given (regular) surface patches
σ1 : U → S1

(so that p ∈ σ(U), p = σ(x0, y0))
and σ2 : U → S2,
σ−12 ◦ f ◦ σ1 is smooth.

Exercise. Show that the definion of a smooth map does
not depend on the choice of parametrizations.

Definition. Consider a smooth map, f : S1 → S2

so that f (p) = q for some p ∈ S1 and q ∈ S2.
Let v ∈ Tp(S1) denote a tangent vector at p.
i.e. v =

.
γ(t0) for some γ : (α, β)→ S1 and t0 ∈ (α, β).

Define dpf : Tp(S1)→ Tp(S2)
(where Tp(S) denotes the tangent space of S at p)
by dpf (v) = d

dtf (γ(t)) ∈ Tp(S2)
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f : S1 → S2,

We now try to describe dpf in terms of the surface patch
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f : S1 → S2,

σ−12 (f (σ1(x, y))) = (g1(x, y), g2(x, y))

Here is f in terms of the surface patch
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f : S1 → S2,

σ−12 (f (σ1(x, y))) = (g1(x, y), g2(x, y))

f (σ1(x(t), y(t))) = σ2(g1(x(t), y(t)), g2(x(t), y(t)))

And this is the image of γ under f
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f : S1 → S2,

σ−12 (f (σ1(x, y))) = (g1(x, y), g2(x, y))

f (σ1(x(t), y(t))) = σ2(g1(x(t), y(t)), g2(x(t), y(t)))

d

dt
f (σ1(x(t), y(t))) = g′1(x(t), y(t))σ2x + g′2(x(t), y(t))σ2y

Written in a form that will allow us to write it in terms of σ2x and σ2y
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f : S1 → S2,

σ−12 (f (σ1(x, y))) = (g1(x, y), g2(x, y))

f (σ1(x(t), y(t))) = σ2(g1(x(t), y(t)), g2(x(t), y(t)))

d

dt
f (σ1(x(t), y(t))) = g′1(x(t), y(t))σ2x + g′2(x(t), y(t))σ2y

= (x′(t)g1x(x(t), y(t)) + y′(t)g1y(x(t), y(t))σx(x(t), y(t))

+ (x′(t)g2x(x(t), y(t)) + y′(t)g2y(x(t), y(t))σy(x(t), y(t))

Now we apply chain rule to each coefficient
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f : S1 → S2,

σ−12 (f (σ1(x, y))) = (g1(x, y), g2(x, y))

f (σ1(x(t), y(t))) = σ2(g1(x(t), y(t)), g2(x(t), y(t)))

d

dt
f (σ1(x(t), y(t))) = g′1(x(t), y(t))σ2x + g′2(x(t), y(t))σ2y

= (x′(t)g1x(x(t), y(t)) + y′(t)g1y(x(t), y(t))σx(x(t), y(t))

+ (x′(t)g2x(x(t), y(t)) + y′(t)g2y(x(t), y(t))σy(x(t), y(t))

In terms of coordinates,

=

(
g1x(t) g1y(t)
g2x(t) g2y(t)

)

And write it in terms of coordinates
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f : S1 → S2,

σ−12 (f (σ1(x, y))) = (g1(x, y), g2(x, y))

f (σ1(x(t), y(t))) = σ2(g1(x(t), y(t)), g2(x(t), y(t)))

d

dt
f (σ1(x(t), y(t))) = g′1(x(t), y(t))σ2x + g′2(x(t), y(t))σ2y

= (x′(t)g1x(x(t), y(t)) + y′(t)g1y(x(t), y(t))σx(x(t), y(t))

+ (x′(t)g2x(x(t), y(t)) + y′(t)g2y(x(t), y(t))σy(x(t), y(t))

In terms of coordinates,

=

(
g1x(t) g1y(t)
g2x(t) g2y(t)

)(
x′(t)
y′(t)

)
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f : S1 → S2,

σ−12 (f (σ1(x, y))) = (g1(x, y), g2(x, y))

f (σ1(x(t), y(t))) = σ2(g1(x(t), y(t)), g2(x(t), y(t)))

d

dt
f (σ1(x(t), y(t))) = g′1(x(t), y(t))σ2x + g′2(x(t), y(t))σ2y

= (x′(t)g1x(x(t), y(t)) + y′(t)g1y(x(t), y(t))σx(x(t), y(t))

+ (x′(t)g2x(x(t), y(t)) + y′(t)g2y(x(t), y(t))σy(x(t), y(t))

In terms of coordinates,

=

(
g1x(t) g1y(t)
g2x(t) g2y(t)

)(
x′(t)
y′(t)

)
= J(σ−12 ◦ f ◦ σ1)

(
x′(t)
y′(t)

)

Notice that the familiar Jacobian matrix shows up again
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For v1,v2 ∈ Tp(S),

The inner product of two tangent vectors is simply the dot product
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

The angular bracket notation only emphasizes that v1 and v2 must be tangent vectors
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

We will try to express this in terms of the surface patch
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0)

First note that by definition they are velocity vectors
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0)

v2 =
.
γ2(t0)
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0))

v2 =
.
γ2(t0)

And now we use chain rule to express them in terms of σx and σy
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0))
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0))
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

Finally, using them in the dot product
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

= (x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))).(x
′
2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

= (x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))).(x
′
2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

= x′1(t0)x
′
2(t0)E(x(t0), y(t0)) + x′1(t0)y

′
2(t0)F (x(t0), y(t0))

+ y′1(t0)x
′
2(t0)F (x(t0), y(t0)) + y′1(t0)y

′
2(t0)G(x(t0), y(t0))

Distributing and recognizing the appearance of E, F , and G
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

= (x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))).(x
′
2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

= x′1(t0)x
′
2(t0)E(x(t0), y(t0)) + x′1(t0)y

′
2(t0)F (x(t0), y(t0))

+ y′1(t0)x
′
2(t0)F (x(t0), y(t0)) + y′1(t0)y

′
2(t0)G(x(t0), y(t0))

Observe that since v1 and v2 are based on the same point, γ1(t0) = γ2(t0)
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

= (x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))).(x
′
2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

= x′1(t0)x
′
2(t0)E(x(t0), y(t0)) + x′1(t0)y

′
2(t0)F (x(t0), y(t0))

+ y′1(t0)x
′
2(t0)F (x(t0), y(t0)) + y′1(t0)y

′
2(t0)G(x(t0), y(t0))

So (x1(t0), y1(t0)) = (x2(t0), y2(t0))
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

= (x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))).(x
′
2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

= x′1(t0)x
′
2(t0)E(x(t0), y(t0)) + x′1(t0)y

′
2(t0)F (x(t0), y(t0))

+ y′1(t0)x
′
2(t0)F (x(t0), y(t0)) + y′1(t0)y

′
2(t0)G(x(t0), y(t0))

=
(
x′1(t0) y

′
1(t0)

)

But now observe that this can be expressed in matrix form
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

= (x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))).(x
′
2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

= x′1(t0)x
′
2(t0)E(x(t0), y(t0)) + x′1(t0)y

′
2(t0)F (x(t0), y(t0))

+ y′1(t0)x
′
2(t0)F (x(t0), y(t0)) + y′1(t0)y

′
2(t0)G(x(t0), y(t0))

=
(
x′1(t0) y

′
1(t0)

)(E(x(t0), y(t0)) F (x(t0), y(t0))
F (x(t0), y(t0)) G(x(t0), y(t0))

)
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For v1,v2 ∈ Tp(S),
〈v1,v2〉 := v1.v2

v1 =
.
γ1(t0) =

d

dt
σ(x1(t0), y1(t0)) = x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))

v2 =
.
γ2(t0) =

d

dt
σ(x2(t0), y2(t0)) = x′2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

〈v1,v2〉 = v1.v2

= (x′1(t0)σx(x1(t0), y1(t0)) + y′1(t0)σy(x1(t0), y1(t0))).(x
′
2(t0)σx(x2(t0), y2(t0)) + y′2(t0)σy(x2(t0), y2(t0))

= x′1(t0)x
′
2(t0)E(x(t0), y(t0)) + x′1(t0)y

′
2(t0)F (x(t0), y(t0))

+ y′1(t0)x
′
2(t0)F (x(t0), y(t0)) + y′1(t0)y

′
2(t0)G(x(t0), y(t0))

=
(
x′1(t0) y

′
1(t0)

)(E(x(t0), y(t0)) F (x(t0), y(t0))
F (x(t0), y(t0)) G(x(t0), y(t0))

)(
x′2(t0)
y′2(t0)

)
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Surface Surface patch

We will summarize how various concepts appear in terms of surface patches
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Surface Surface patch

p ∈ S

A surface patch gives two coordinates to every point on part of a surface
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S

To every subset in the patch of S, it associates a subset in U
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S

It associates to every curve on that part of the surface, a curve in U
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0)

It provides a basis σx and σy, and tangent vectors are written in terms of them
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R

To a function with domain S1, it associates a function with domain U
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2

To a function with surfaces as both domains and ranges, it associates a function between the domains of their patches
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1
〈v1,v2〉

To the inner product, it associates the matrix of “first fundamental form”
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy

dp(f ) : Tp(S1)→ Tf(p)(S2)

To a derivative of a function between two surfaces, it associates the “Jacobian” matrix
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy

dp(f ) : Tp(S1)→ Tf(p)(S2)

(
g1x g1y

g2x g2y

)
, where (g1, g2) = σ−12 ◦ f ◦ σ1
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy

dp(f ) : Tp(S1)→ Tf(p)(S2)

(
g1x g1y

g2x g2y

)
, where (g1, g2) = σ−12 ◦ f ◦ σ1

‖σx × σy‖

To the infinitesimal area, it associates the determinant of the first fundamental form matrix

74



Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy

dp(f ) : Tp(S1)→ Tf(p)(S2)

(
g1x g1y

g2x g2y

)
, where (g1, g2) = σ−12 ◦ f ◦ σ1

‖σx × σy‖ |EG− F 2| = det

(
E F

F G

)
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy

dp(f ) : Tp(S1)→ Tf(p)(S2)

(
g1x g1y

g2x g2y

)
, where (g1, g2) = σ−12 ◦ f ◦ σ1

‖σx × σy‖ |EG− F 2| = det

(
E F

F G

)
Area =

∫
σ(U) ‖σx × σy‖

And to the area, the integral of the above determinant.
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy

dp(f ) : Tp(S1)→ Tf(p)(S2)

(
g1x g1y

g2x g2y

)
, where (g1, g2) = σ−12 ◦ f ◦ σ1

‖σx × σy‖ |EG− F 2| = det

(
E F

F G

)
Area =

∫
σ(U) ‖σx × σy‖

∫
U |EG− F

2|
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Surface Surface patch

p ∈ S (x, y) ∈ U , where σ(x, y) = p

A ⊂ S B ⊂ U , where σ(B) = A

γ : (α, β)→ S δ : (α, β)→ U , where γ = σ ◦ δ
v =

.
γ(t0) v = x′σx + y′σy, where γ(t) = σ(x(t), y(t))

f : S1 → R g : U → R, where g = f ◦ σ
f : S1 → S2 g : U1 → U2, where g = σ−12 ◦ f ◦ σ1

〈v1,v2〉
(
x′1 y

′
1

)(E F

F G

)(
x′2
y′2

)
, where vi = x′iσx+y

′
iσy

dp(f ) : Tp(S1)→ Tf(p)(S2)

(
g1x g1y

g2x g2y

)
, where (g1, g2) = σ−12 ◦ f ◦ σ1

‖σx × σy‖ |EG− F 2| = det

(
E F

F G

)
Area =

∫
σ(U) ‖σx × σy‖

∫
U |EG− F

2|
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