Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\tilde{\sigma}=\sigma \circ \Phi
$$

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{gathered}
\tilde{\sigma}=\sigma \circ \Phi \\
f \circ \tilde{\sigma}=f \circ \sigma \circ \Phi
\end{gathered}
$$

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{gathered}
\tilde{\sigma}=\sigma \circ \Phi \\
f \circ \tilde{\sigma}=f \circ \sigma \circ \Phi
\end{gathered}
$$

Therefore,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{gathered}
\tilde{\sigma}=\sigma \circ \Phi \\
f \circ \tilde{\sigma}=f \circ \sigma \circ \Phi
\end{gathered}
$$

Therefore, $f \circ \sigma$ smooth

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{gathered}
\tilde{\sigma}=\sigma \circ \Phi \\
f \circ \tilde{\sigma}=f \circ \sigma \circ \Phi
\end{gathered}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth

Smooth functions

Definition.

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{gathered}
\tilde{\sigma}=\sigma \circ \Phi \\
f \circ \tilde{\sigma}=f \circ \sigma \circ \Phi
\end{gathered}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function
Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{gathered}
\tilde{\sigma}=\sigma \circ \Phi \\
f \circ \tilde{\sigma}=f \circ \sigma \circ \Phi
\end{gathered}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at p if, given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth
function at $p \in S_{1}$ if, given (regular) surface patches
Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{gathered}
\tilde{\sigma}=\sigma \circ \Phi \\
f \circ \tilde{\sigma}=f \circ \sigma \circ \Phi
\end{gathered}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$ if, given (regular) surface patches (so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$ if, given (regular) surface patches
(so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)
and $\sigma_{2}: U \rightarrow S_{2}$,

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$,
$f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.
If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$ if, given (regular) surface patches
(so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)
and $\sigma_{2}: U \rightarrow S_{2}$,
$\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ is smooth.
Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_{1} \rightarrow S_{2}$

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$ if, given (regular) surface patches
(so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)
and $\sigma_{2}: U \rightarrow S_{2}$,
$\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ is smooth.
Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_{1} \rightarrow S_{2}$ so that $f(p)=q$ for some $p \in S_{1}$ and $q \in S_{2}$.

Smooth functions

Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$ if, given (regular) surface patches
(so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)
and $\sigma_{2}: U \rightarrow S_{2}$,
$\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ is smooth.
Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_{1} \rightarrow S_{2}$
so that $f(p)=q$ for some $p \in S_{1}$ and $q \in S_{2}$.
Let $\mathbf{v} \in T_{p}\left(S_{1}\right)$ denote a tangent vector at p.

Smooth functions

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$ if, given (regular) surface patches
Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

(so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)
and $\sigma_{2}: U \rightarrow S_{2}$,
$\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ is smooth.
Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_{1} \rightarrow S_{2}$
so that $f(p)=q$ for some $p \in S_{1}$ and $q \in S_{2}$.
Let $\mathbf{v} \in T_{p}\left(S_{1}\right)$ denote a tangent vector at p.
i.e. $\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$ for some $\gamma:(\alpha, \beta) \rightarrow S_{1}$ and $t_{0} \in(\alpha, \beta)$.

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)

Smooth functions

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth function at $p \in S_{1}$ if, given (regular) surface patches
Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$, so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)
(so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)
and $\sigma_{2}: U \rightarrow S_{2}$,
$\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ is smooth.
Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_{1} \rightarrow S_{2}$
so that $f(p)=q$ for some $p \in S_{1}$ and $q \in S_{2}$.
Let $\mathbf{v} \in T_{p}\left(S_{1}\right)$ denote a tangent vector at p.
i.e. $\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$ for some $\gamma:(\alpha, \beta) \rightarrow S_{1}$ and $t_{0} \in(\alpha, \beta)$.

Define $\mathrm{d}_{p} f: T_{p}\left(S_{1}\right) \rightarrow T_{p}\left(S_{2}\right)$
(where $T_{p}(S)$ denotes the tangent space of S at p)
by $\mathrm{d}_{p} f(\mathbf{v})=\frac{\mathrm{d}}{\mathrm{d} t} f(\gamma(t)) \in T_{p}\left(S_{2}\right)$

Smooth functions

Definition. $f: S_{1} \rightarrow S_{2}$ is said to be a smooth
function at $p \in S_{1}$ if, given (regular) surface patches
Definition. $f: S \rightarrow \mathbb{R}$ is called a smooth map at $p \sigma_{1}: U \rightarrow S_{1}$
if,
given a (regular) surface patch $\sigma: U \rightarrow S$,
so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$, $f \circ \sigma$ is smooth at $\left(x_{0}, y_{0}\right)$.

If $\tilde{\sigma}: \tilde{U} \rightarrow S$ is another surface patch so that, $\tilde{\sigma}=\sigma \circ \Phi$, where $\Phi: \tilde{U} \rightarrow U$ is smooth, invertible, and the inverse is smooth, Since,

$$
\begin{aligned}
\tilde{\sigma} & =\sigma \circ \Phi \\
f \circ \tilde{\sigma} & =f \circ \sigma \circ \Phi
\end{aligned}
$$

Therefore, $f \circ \sigma$ smooth $\Longrightarrow f \circ \tilde{\sigma}$ is smooth (because, $f \circ \sigma$ and Φ are smooth)
(so that $p \in \sigma(U), p=\sigma\left(x_{0}, y_{0}\right)$)
and $\sigma_{2}: U \rightarrow S_{2}$,
$\sigma_{2}^{-1} \circ f \circ \sigma_{1}$ is smooth.
Exercise. Show that the definion of a smooth map does not depend on the choice of parametrizations.

Definition. Consider a smooth map, $f: S_{1} \rightarrow S_{2}$
so that $f(p)=q$ for some $p \in S_{1}$ and $q \in S_{2}$.
Let $\mathbf{v} \in T_{p}\left(S_{1}\right)$ denote a tangent vector at p.
i.e. $\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$ for some $\gamma:(\alpha, \beta) \rightarrow S_{1}$ and $t_{0} \in(\alpha, \beta)$.

Define $\mathrm{d}_{p} f: T_{p}\left(S_{1}\right) \rightarrow T_{p}\left(S_{2}\right)$
(where $T_{p}(S)$ denotes the tangent space of S at p)
by $\mathrm{d}_{p} f(\mathbf{v})=\frac{\mathrm{d}}{\mathrm{d} t} f(\gamma(t)) \in T_{p}\left(S_{2}\right)$
$f: S_{1} \rightarrow S_{2}$,

We now try to describe $d_{p} f$ in terms of the surface patch
$f: S_{1} \rightarrow S_{2}$,

$$
\sigma_{2}^{-1}\left(f\left(\sigma_{1}(x, y)\right)\right)=\left(g_{1}(x, y), g_{2}(x, y)\right)
$$

Here is f in terms of the surface patch
$f: S_{1} \rightarrow S_{2}$,

$$
\begin{aligned}
\sigma_{2}^{-1}\left(f\left(\sigma_{1}(x, y)\right)\right) & =\left(g_{1}(x, y), g_{2}(x, y)\right) \\
f\left(\sigma_{1}(x(t), y(t))\right) & =\sigma_{2}\left(g_{1}(x(t), y(t)), g_{2}(x(t), y(t))\right)
\end{aligned}
$$

$f: S_{1} \rightarrow S_{2}$,

$$
\begin{aligned}
\sigma_{2}^{-1}\left(f\left(\sigma_{1}(x, y)\right)\right) & =\left(g_{1}(x, y), g_{2}(x, y)\right) \\
f\left(\sigma_{1}(x(t), y(t))\right) & =\sigma_{2}\left(g_{1}(x(t), y(t)), g_{2}(x(t), y(t))\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} f\left(\sigma_{1}(x(t), y(t))\right) & =g_{1}^{\prime}(x(t), y(t)) \sigma_{2 x}+g_{2}^{\prime}(x(t), y(t)) \sigma_{2 y}
\end{aligned}
$$

$f: S_{1} \rightarrow S_{2}$,

$$
\begin{aligned}
\sigma_{2}^{-1}\left(f\left(\sigma_{1}(x, y)\right)\right)= & \left(g_{1}(x, y), g_{2}(x, y)\right) \\
f\left(\sigma_{1}(x(t), y(t))\right)= & \sigma_{2}\left(g_{1}(x(t), y(t)), g_{2}(x(t), y(t))\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} f\left(\sigma_{1}(x(t), y(t))\right) & =g_{1}^{\prime}(x(t), y(t)) \sigma_{2 x}+g_{2}^{\prime}(x(t), y(t)) \sigma_{2 y} \\
& =\left(x^{\prime}(t) g_{1 x}(x(t), y(t))+y^{\prime}(t) g_{1 y}(x(t), y(t)) \sigma_{x}(x(t), y(t))\right. \\
& +\left(x^{\prime}(t) g_{2 x}(x(t), y(t))+y^{\prime}(t) g_{2 y}(x(t), y(t)) \sigma_{y}(x(t), y(t))\right.
\end{aligned}
$$

$f: S_{1} \rightarrow S_{2}$,

$$
\begin{aligned}
\sigma_{2}^{-1}\left(f\left(\sigma_{1}(x, y)\right)\right)= & \left(g_{1}(x, y), g_{2}(x, y)\right) \\
f\left(\sigma_{1}(x(t), y(t))\right)= & \sigma_{2}\left(g_{1}(x(t), y(t)), g_{2}(x(t), y(t))\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} f\left(\sigma_{1}(x(t), y(t))\right) & =g_{1}^{\prime}(x(t), y(t)) \sigma_{2 x}+g_{2}^{\prime}(x(t), y(t)) \sigma_{2 y} \\
& =\left(x^{\prime}(t) g_{1 x}(x(t), y(t))+y^{\prime}(t) g_{1 y}(x(t), y(t)) \sigma_{x}(x(t), y(t))\right. \\
& +\left(x^{\prime}(t) g_{2 x}(x(t), y(t))+y^{\prime}(t) g_{2 y}(x(t), y(t)) \sigma_{y}(x(t), y(t))\right.
\end{aligned}
$$

In terms of coordinates,

$$
=\left(\begin{array}{ll}
g_{1 x}(t) & g_{1 y}(t) \\
g_{2 x}(t) & g_{2 y}(t)
\end{array}\right)
$$

$f: S_{1} \rightarrow S_{2}$,

$$
\begin{aligned}
\sigma_{2}^{-1}\left(f\left(\sigma_{1}(x, y)\right)\right)= & \left(g_{1}(x, y), g_{2}(x, y)\right) \\
f\left(\sigma_{1}(x(t), y(t))\right)= & \sigma_{2}\left(g_{1}(x(t), y(t)), g_{2}(x(t), y(t))\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} f\left(\sigma_{1}(x(t), y(t))\right) & =g_{1}^{\prime}(x(t), y(t)) \sigma_{2 x}+g_{2}^{\prime}(x(t), y(t)) \sigma_{2 y} \\
& =\left(x^{\prime}(t) g_{1 x}(x(t), y(t))+y^{\prime}(t) g_{1 y}(x(t), y(t)) \sigma_{x}(x(t), y(t))\right. \\
& +\left(x^{\prime}(t) g_{2 x}(x(t), y(t))+y^{\prime}(t) g_{2 y}(x(t), y(t)) \sigma_{y}(x(t), y(t))\right.
\end{aligned}
$$

In terms of coordinates,

$$
=\left(\begin{array}{ll}
g_{1 x}(t) & g_{1 y}(t) \\
g_{2 x}(t) & g_{2 y}(t)
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)}
$$

$f: S_{1} \rightarrow S_{2}$,

$$
\begin{aligned}
\sigma_{2}^{-1}\left(f\left(\sigma_{1}(x, y)\right)\right)= & \left(g_{1}(x, y), g_{2}(x, y)\right) \\
f\left(\sigma_{1}(x(t), y(t))\right)= & \sigma_{2}\left(g_{1}(x(t), y(t)), g_{2}(x(t), y(t))\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} f\left(\sigma_{1}(x(t), y(t))\right) & =g_{1}^{\prime}(x(t), y(t)) \sigma_{2 x}+g_{2}^{\prime}(x(t), y(t)) \sigma_{2 y} \\
& =\left(x^{\prime}(t) g_{1 x}(x(t), y(t))+y^{\prime}(t) g_{1 y}(x(t), y(t)) \sigma_{x}(x(t), y(t))\right. \\
& +\left(x^{\prime}(t) g_{2 x}(x(t), y(t))+y^{\prime}(t) g_{2 y}(x(t), y(t)) \sigma_{y}(x(t), y(t))\right.
\end{aligned}
$$

In terms of coordinates,

$$
\begin{aligned}
& =\left(\begin{array}{ll}
g_{1 x}(t) & g_{1 y}(t) \\
g_{2 x}(t) & g_{2 y}(t)
\end{array}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)} \\
& =J\left(\sigma_{2}^{-1} \circ f \circ \sigma_{1}\right)\binom{x^{\prime}(t)}{y^{\prime}(t)}
\end{aligned}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$, $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$, $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

$$
\mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)
\end{aligned}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)
\end{aligned}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{dt} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} \mathrm{t}} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$, $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
=\left(x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)\right) \cdot\left(x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)\right.
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
=\left(x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)\right) \cdot\left(x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)\right.
$$

$$
=x_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+x_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
+y_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) G\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
=\left(x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)\right) \cdot\left(x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)\right.
$$

$$
=x_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+x_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
+y_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) G\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
=\left(x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)\right) \cdot\left(x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)\right.
$$

$$
=x_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+x_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
+y_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) G\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
=\left(x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)\right) \cdot\left(x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)\right.
$$

$$
=x_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+x_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
+y_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) G\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)
$$

$$
=\left(x_{1}^{\prime}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)\right)
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle & =\mathbf{v}_{1} \cdot \mathbf{v}_{2} \\
& =\left(x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)\right) \cdot\left(x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)\right. \\
& =x_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+x_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& +y_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) G\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& =\left(x_{1}^{\prime}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)\right)\binom{E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}{F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}
\end{aligned}
$$

For $\mathbf{v}_{1}, \mathbf{v}_{2} \in T_{p}(S)$,

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle:=\mathbf{v}_{1} \cdot \mathbf{v}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}_{1}=\dot{\gamma}_{1}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)=x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right) \\
& \mathbf{v}_{2}=\dot{\gamma}_{2}\left(t_{0}\right)=\frac{\mathrm{d}}{\mathrm{~d} t} \sigma\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)=x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle & =\mathbf{v}_{1} \cdot \mathbf{v}_{2} \\
& =\left(x_{1}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{1}\left(t_{0}\right), y_{1}\left(t_{0}\right)\right)\right) \cdot\left(x_{2}^{\prime}\left(t_{0}\right) \sigma_{x}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)+y_{2}^{\prime}\left(t_{0}\right) \sigma_{y}\left(x_{2}\left(t_{0}\right), y_{2}\left(t_{0}\right)\right)\right. \\
& =x_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+x_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& +y_{1}^{\prime}\left(t_{0}\right) x_{2}^{\prime}\left(t_{0}\right) F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)+y_{1}^{\prime}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right) G\left(x\left(t_{0}\right), y\left(t_{0}\right)\right) \\
& \left.=\left(x_{1}^{\prime}\left(t_{0}\right) y_{1}^{\prime}\left(t_{0}\right)\right)\binom{E\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}{F\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)} G\left(x\left(t_{0}\right), y\left(t_{0}\right)\right), y\left(t_{0}\right)\right)
\end{array}\right)\binom{x_{2}^{\prime}\left(t_{0}\right)}{y_{2}^{\prime}\left(t_{0}\right)}\right) ~ \$
$$

Surface	Surface patch
$n \in S$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$
$f: S_{1} \rightarrow S_{2}$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{cc}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{cc}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$
$\mathrm{~d}_{p}(f): T_{p}\left(S_{1}\right) \rightarrow T_{f(p)}\left(S_{2}\right)$	

Surface	Surface patch
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$
$A \subset S$	$B \subset U$, where $\sigma(B)=A$
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{cc}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$
$\mathrm{~d}_{p}(f): T_{p}\left(S_{1}\right) \rightarrow T_{f(p)}\left(S_{2}\right)$	$\left(\begin{array}{ll}g_{1 x} & g_{1 y} \\ g_{2 x} & g_{2 y}\end{array}\right)$, where $\left(g_{1}, g_{2}\right)=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$

Surface	Surface patch		
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$		
$A \subset S$	$B \subset U$, where $\sigma(B)=A$		
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$		
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$		
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$		
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$		
$\mathrm{~d}_{p}(f): T_{p}\left(S_{1}\right) \rightarrow T_{f(p)}\left(S_{2}\right)$	$\left(\begin{array}{ll}g_{1 x} & g_{1 y} \\ g_{2 x} & g_{2 y}\end{array}\right)$, where $\left(g_{1}, g_{2}\right)=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\\|\sigma_{x} \times \sigma_{y}\right\\|$			

Surface	Surface patch		
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$		
$A \subset S$	$B \subset U$, where $\sigma(B)=A$		
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$		
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$		
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$		
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$		
$\mathrm{~d}_{p}(f): T_{p}\left(S_{1}\right) \rightarrow T_{f(p)}\left(S_{2}\right)$	$\left(\begin{array}{ll}g_{1 x} & g_{1 y} \\ g_{2_{x}} & g_{2 y}\end{array}\right)$, where $\left(g_{1}, g_{2}\right)=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\\|\sigma_{x} \times \sigma_{y}\right\\|$	$\left\|E G-F^{2}\right\|=\operatorname{det}\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)$		

Surface	Surface patch		
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$		
$A \subset S$	$B \subset U$, where $\sigma(B)=A$		
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$		
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$		
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$		
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$		
$\mathrm{~d}_{p}(f): T_{p}\left(S_{1}\right) \rightarrow T_{f(p)}\left(S_{2}\right)$	$\left(\begin{array}{ll}g_{1_{x}} & g_{1 y} \\ g_{2_{x}} & g_{2 y}\end{array}\right)$, where $\left(g_{1}, g_{2}\right)=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\\|\sigma_{x} \times \sigma_{y}\right\\|$	$\left\|E G-F^{2}\right\|=\operatorname{det}\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)$		
Area $=\int_{\sigma(U)}\left\\|\sigma_{x} \times \sigma_{y}\right\\|$			

And to the area, the integral of the above determinant.

Surface	Surface patch		
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$		
$A \subset S$	$B \subset U$, where $\sigma(B)=A$		
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$		
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$		
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$		
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$		
$\mathrm{~d}_{p}(f): T_{p}\left(S_{1}\right) \rightarrow T_{f(p)}\left(S_{2}\right)$	$\left(\begin{array}{ll}g_{1 x} & g_{1 y} \\ g_{2 x} & g_{2 y}\end{array}\right)$, where $\left(g_{1}, g_{2}\right)=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\\|\sigma_{x} \times \sigma_{y}\right\\|$	$\left\|E G-F^{2}\right\|=\operatorname{det}\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)$		
Area $=\int_{\sigma(U)}\left\\|\sigma_{x} \times \sigma_{y}\right\\|$	$\int_{U}\left\|E G-F^{2}\right\|$		

Surface	Surface patch		
$p \in S$	$(x, y) \in U$, where $\sigma(x, y)=p$		
$A \subset S$	$B \subset U$, where $\sigma(B)=A$		
$\gamma:(\alpha, \beta) \rightarrow S$	$\delta:(\alpha, \beta) \rightarrow U$, where $\gamma=\sigma \circ \delta$		
$\mathbf{v}=\dot{\gamma}\left(t_{0}\right)$	$\mathbf{v}=x^{\prime} \sigma_{x}+y^{\prime} \sigma_{y}$, where $\gamma(t)=\sigma(x(t), y(t))$		
$f: S_{1} \rightarrow \mathbb{R}$	$g: U \rightarrow \mathbb{R}$, where $g=f \circ \sigma$		
$f: S_{1} \rightarrow S_{2}$	$g: U_{1} \rightarrow U_{2}$, where $g=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$	$\left(\begin{array}{ll}x_{1}^{\prime} & y_{1}^{\prime}\end{array}\right)\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)\binom{x_{2}^{\prime}}{y_{2}^{\prime}}$, where $\mathbf{v}_{i}=x_{i}^{\prime} \sigma_{x}+y_{i}^{\prime} \sigma_{y}$		
$\mathrm{~d}_{p}(f): T_{p}\left(S_{1}\right) \rightarrow T_{f(p)}\left(S_{2}\right)$	$\left(\begin{array}{ll}g_{1 x} & g_{1 y} \\ g_{2 x} & g_{2 y}\end{array}\right)$, where $\left(g_{1}, g_{2}\right)=\sigma_{2}^{-1} \circ f \circ \sigma_{1}$		
$\left\\|\sigma_{x} \times \sigma_{y}\right\\|$	$\left\|E G-F^{2}\right\|=\operatorname{det}\left(\begin{array}{ll}E & F \\ F & G\end{array}\right)$		
Area $=\int_{\sigma(U)}\left\\|\sigma_{x} \times \sigma_{y}\right\\|$	$\int_{U}\left\|E G-F^{2}\right\|$		

