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' ] sy orthonormal for all ¢
there is a unit speed parametrization, 7 : (o, 3) — R3 reiionormal 1or a

so that, " Canfind v(t), so that, T(t) = 4(t) = e1(t) and y(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=(ty) B(t) unit ]

3. E, = T(t), B2 = N(t,), E; = B(ty)



Theorem. Given, Proof.
é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
1. functions & : (a, B) = R, &(t) > 0 for all t, and €5(t) = —k(t)e1(t) + Oey(t) + 7(t)es(t)
7:(a,8) > R é3(t) = 0ey(t) — 7(t)es(t) + Oes(t)

2. p RS, ty € (a, B), By the theory of differential equations, always has a so-
lution, unique it we fix,
3. an orthonormal basis {E1,Ey, E3} based at p, e|(ty) = Eq, es(ty) = Ey, and es(ty) = Es.

such that B3 = Ey X Es. (e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is

' ] sy orthonormal for all ¢
there is a unit speed parametrization, 7 : (o, 3) — R3 reiionormal 1or a

so that, " Canfind v(t), so that, T(t) = 4(t) = e1(t) and y(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=(ty) B(t) unit and orthogonal ]

3. E, = T(t), B2 = N(t,), E; = B(ty)



Theorem. Given, Proof.
é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
1. functions & : (a, B) = R, &(t) > 0 for all t, and €5(t) = —k(t)e1(t) + Oey(t) + 7(t)es(t)
7:(a,8) > R é3(t) = 0ey(t) — 7(t)es(t) + Oes(t)

2. p RS, ty € (a, B), By the theory of differential equations, always has a so-
lution, unique it we fix,
3. an orthonormal basis {E1,Ey, E3} based at p, e|(ty) = Eq, es(ty) = Ey, and es(ty) = Es.

such that B3 = Ey X Es. (e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is

' ] sy orthonormal for all ¢
there is a unit speed parametrization, 7 : (o, 3) — R3 reiionormal 1or a

so that, " Canfind v(t), so that, T(t) = 4(t) = e1(t) and y(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=(ty) B(t) unit and orthogonal to T(¢) and N(t). ]

3. E, = T(t), B2 = N(t,), E; = B(ty)



Theorem. Given, Proof.
é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
1. functions & : (a, B) = R, &(t) > 0 for all t, and €5(t) = —k(t)e1(t) + Oey(t) + 7(t)es(t)
7:(a,8) > R é3(t) = 0ey(t) — 7(t)es(t) + Oes(t)

2. p RS, ty € (a, B), By the theory of differential equations, always has a so-
lution, unique it we fix,
3. an orthonormal basis {E1,Ey, E3} based at p, e|(ty) = Eq, es(ty) = Ey, and es(ty) = Es.

such that B3 = Ey X Es. (e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is

' ] sy orthonormal for all ¢
there is a unit speed parametrization, 7 : (o, 3) — R3 reiionormal 1or a

so that, " Canfind v(t), so that, T(t) = 4(t) = e1(t) and y(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=n~(ty) B(t) unit and orthogonal to T(t) = e1(t) and N(¢) =
el(t). L]

3. E, = T(t), B2 = N(t,), E; = B(ty)



Theorem. Given, Proof.
é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
1. functions & : (a, B) = R, &(t) > 0 for all t, and €5(t) = —k(t)e1(t) + Oey(t) + 7(t)es(t)
7:(a,8) > R é3(t) = 0ey(t) — 7(t)es(t) + Oes(t)

2. p RS, ty € (a, B), By the theory of differential equations, always has a so-
lution, unique it we fix,
3. an orthonormal basis {E1,Ey, E3} based at p, e|(ty) = Eq, es(ty) = Ey, and es(ty) = Es.

such that B3 = Ey X Es. (e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is

' / Y orthono ] f It
there is a unit speed parametrization, v : (a, 8) — R3 rthonormal Ior a

so that, Can find y(t), so that, T(t) = §(t) = e1(t) and v(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=n~(ty) B(t) unit and orthogonal to T(t) = e1(t) and N(¢) =
el(t).

3. B = T(t()), By = N(t()), E3 = B<t0> eg<t) L



Theorem. Given, Proof.
é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
1. functions & : (a, B) = R, &(t) > 0 for all t, and €5(t) = —k(t)e1(t) + Oey(t) + 7(t)es(t)
7:(a,8) > R é3(t) = 0ey(t) — 7(t)es(t) + Oes(t)

2. p RS, ty € (a, B), By the theory of differential equations, always has a so-
lution, unique it we fix,
3. an orthonormal basis {E1,Ey, E3} based at p, e|(ty) = Eq, es(ty) = Ey, and es(ty) = Es.

such that B3 = Ey X Es. (e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is

' / Y orthono ] f It
there is a unit speed parametrization, v : (a, 8) — R3 rthonormal Ior a

so that, Can find y(t), so that, T(t) = §(t) = e1(t) and v(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=n~(ty) B(t) unit and orthogonal to T(t) = e1(t) and N(¢) =
el(t).

5. Eq = T(lo), E2 = N(t), E3 = B({o) es(t) unit a



Theorem. Given, Proof.
é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
1. functions & : (a, B) = R, &(t) > 0 for all t, and €5(t) = —k(t)e1(t) + Oey(t) + 7(t)es(t)
7:(a,8) > R é3(t) = 0ey(t) — 7(t)es(t) + Oes(t)

2. p RS, ty € (a, B), By the theory of differential equations, always has a so-
lution, unique it we fix,
3. an orthonormal basis {E1,Ey, E3} based at p, e|(ty) = Eq, es(ty) = Ey, and es(ty) = Es.

such that B3 = Ey X Es. (e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is

' / Y orthono ] f It
there is a unit speed parametrization, v : (a, 8) — R3 rthonormal Ior a

so that, Can find y(t), so that, T(t) = §(t) = e1(t) and v(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=n~(ty) B(t) unit and orthogonal to T(t) = e1(t) and N(¢) =
el(t).

3. By = T(ty), E2 = N(to), Ez = B(ty) e3(t) unit and orthogonal []



Theorem. Given, Proof.
é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
1. functions & : (a, B) = R, &(t) > 0 for all t, and €5(t) = —k(t)e1(t) + Oey(t) + 7(t)es(t)
7:(a,8) > R é3(t) = 0ey(t) — 7(t)es(t) + Oes(t)

2. p RS, ty € (a, B), By the theory of differential equations, always has a so-
lution, unique it we fix,
3. an orthonormal basis {E1,Ey, E3} based at p, e|(ty) = Eq, es(ty) = Ey, and es(ty) = Es.

such that B3 = Ey X Es. (e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is

' / Y orthono ] f It
there is a unit speed parametrization, v : (a, 8) — R3 rthonormal Ior a

so that, Can find y(t), so that, T(t) = §(t) = e1(t) and v(ty) = p
(exercise!! Integration (anti-derivative)!)

1. & (a,8) — R3 is its curvature function and K(N(t) = T(t) = e1(t) = K(t)es(t)
7: (o, B) — R? is its torsion function So, N(t) = es(t)
2. p=n~(ty) B(t) unit and orthogonal to T(t) = e1(t) and N(¢) =
el(t).

3. Ey =T(lo), B2 = N(t), Es = B(t) e3(t) unit and orthogonal to e1(t) and es(t). (]



Theorem. Given,

1. functions & : (o, B) = R, K(t) > 0 for all t, and
7 (a,0) = R
2. pE RS; ty € <@7B)7

3. an orthonormal basis {Eq, Eo, Es} based at p,
such that Es = E; x Es.

there is a unit speed parametrization, v : (o, 3) — R3,
so that,

1. & (a,8) — R3 is its curvature function and

(o, B) — R is its torsion function

2. p=(to)
9. By = T(t), By = N(t,), Es = B(#)

N RN

Proof.

é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
es(t) = —k(t)ei(t) + Oes(t) + 7(t)es(t)
63<t) = Oel(t) — T(t)62<t) + Oeg(t)

By the theory of differential equations, always has a so-

lution, unique it we fix,
el<t0> = El, 62<t0) = EQ, and eg(to) = Eg.

(e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is
orthonormal for all ¢

Can find (), so that, T(t) = 4(t) = e1(t) and y(ty) = p
(exercise!! Integration (anti-derivative)!)

K(EN(t) = T(t) = ei(t) = w(t)es(t)

807 N<t) — 62<t>

B(t) unit and orthogonal to T(t) = e1(t) and N(¢) =
el(t).

e3(t) unit and orthogonal to ei(t) and es(t). only two
choices, and negatives of each other. So one is e{(t) x

ey(t), other is —eq(t) x ey(t). ]



Theorem. Given,

1. functions & : (o, B) = R, K(t) > 0 for all t, and
7 (a,0) = R
2. pE RS; ty € <@7B)7

3. an orthonormal basis {Eq, Eo, Es} based at p,
such that Es = E; x Es.

there is a unit speed parametrization, v : (o, 3) — R3,
so that,

1. & (a,8) — R3 is its curvature function and

(o, B) — R is its torsion function

2. p=(to)
9. By = T(t), By = N(t,), Es = B(#)

N RN

Proof.

é1<t) = Oel(t) + /i(?f)@g(t) + Oeg<t>
es(t) = —k(t)ei(t) + Oes(t) + 7(t)es(t)
63<t) = Oel(t) — T(t)62<t) + Oeg(t)

By the theory of differential equations, always has a so-

lution, unique it we fix,
el<t0> = El, 62<t0) = EQ, and eg(to) = Eg.

(e;.€;) = 0 (exercise!), so constant, so {ej, e, €3} is
orthonormal for all ¢

Can find (), so that, T(t) = 4(t) = e1(t) and y(ty) = p
(exercise!! Integration (anti-derivative)!)

K(EN(t) = T(t) = ei(t) = w(t)es(t)

807 N<t) — 62<t>

B(t) unit and orthogonal to T(t) = e1(t) and N(¢) =
el(t).

e3(t) unit and orthogonal to ei(t) and es(t). only two
choices, and negatives of each other. So one is e{(t) x

ey(t), other is —ey(t) x ey(t). Can distinguish using dot



products...



