Space curves

Given

Space curves

Given γ

Space curves

Given $\gamma:(\alpha, \beta)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=? ? \ddot{\gamma}(t)$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=? ? \ddot{\gamma}(t)$, perpendicular to $\mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\|\dot{\gamma}(t)\|} \ddot{\gamma}(t)$, perpendicular to $\mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\|\dot{\gamma}(t)\|} \ddot{\gamma}(t)$, unit vector perpendicular to $\mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, unit vector perpendicular to $\mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}$

$$
\mathbf{v}=\alpha_{1} \mathbf{e}_{\mathbf{1}}+\alpha_{2} \mathbf{e}_{\mathbf{2}}+\alpha_{3} \mathbf{e}_{3}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}$

$$
\begin{aligned}
& \mathbf{v}=\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3} \\
& \mathbf{w}=\beta_{1} \mathbf{e}_{1}+\beta_{2} \mathbf{e}_{2}+\beta_{3} \mathbf{e}_{3}
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}$

$$
\begin{aligned}
& \mathbf{v}=\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3} \\
& \mathbf{w}=\beta_{1} \mathbf{e}_{1}+\beta_{2} \mathbf{e}_{2}+\beta_{3} \mathbf{e}_{3} \\
& \mathbf{v} \times \mathbf{w}=\left(\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}\right) \times\left(\beta_{1} \mathbf{e}_{1}+\beta_{2} \mathbf{e}_{2}+\beta_{3} \mathbf{e}_{3}\right)
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$

$$
\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}
$$

$$
\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}
$$

$$
\begin{aligned}
& \mathbf{v}=\alpha_{1} \mathbf{e}_{\mathbf{1}}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3} \\
& \mathbf{w}=\beta_{1} \mathbf{e}_{\mathbf{1}}+\beta_{2} \mathbf{e}_{2}+\beta_{3} \mathbf{e}_{3} \\
& \mathbf{v} \times \mathbf{w} \\
& =\left(\alpha_{1} \mathbf{e}_{\mathbf{1}}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}\right) \times\left(\beta_{1} \mathbf{e}_{\mathbf{1}}+\beta_{2} \mathbf{e}_{2}+\beta_{3} \mathbf{e}_{3}\right) \\
& \\
& \quad=\left(\beta_{2} \alpha_{3}-\beta_{3} \alpha_{2}\right) \mathbf{e}_{\mathbf{1}}+\cdots
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}$

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha_{1}(t) \mathbf{e}_{\mathbf{1}}+\alpha_{2}(t) \mathbf{e}_{\mathbf{2}}+\alpha_{3}(t) \mathbf{e}_{3} \\
& \mathbf{w}(t)=\beta_{1}(t) \mathbf{e}_{\mathbf{1}}+\beta_{2}(t) \mathbf{e}_{\mathbf{2}}+\beta_{3}(t) \mathbf{e}_{\mathbf{3}} \\
& \begin{aligned}
\mathbf{v}(t) \times \mathbf{w}(t) & =\left(\alpha_{1}(t) \mathbf{e}_{\mathbf{1}}+\alpha_{2}(t) \mathbf{e}_{2}+\alpha_{3}(t) \mathbf{e}_{\mathbf{3}}\right) \times\left(\beta_{1}(t) \mathbf{e}_{\mathbf{1}}+\beta_{2}(t) \mathbf{e}_{2}+\beta_{3}(t) \mathbf{e}_{\mathbf{3}}\right) \\
& =\left(\beta_{2}(t) \alpha_{3}(t)-\beta_{3}(t) \alpha_{2}(t)\right) \mathbf{e}_{\mathbf{1}}+\cdots
\end{aligned}
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}$

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha_{1}(t) \mathbf{e}_{1}+\alpha_{2}(t) \mathbf{e}_{2}+\alpha_{3}(t) \mathbf{e}_{3} \\
& \mathbf{w}(t)=\beta_{1}(t) \mathbf{e}_{\mathbf{1}}+\beta_{2}(t) \mathbf{e}_{\mathbf{2}}+\beta_{3}(t) \mathbf{e}_{3} \\
& \begin{aligned}
\mathbf{v}(t) \times \mathbf{w}(t) & =\left(\alpha_{1}(t) \mathbf{e}_{\mathbf{1}}+\alpha_{2}(t) \mathbf{e}_{2}+\alpha_{3}(t) \mathbf{e}_{\mathbf{3}}\right) \times\left(\beta_{1}(t) \mathbf{e}_{\mathbf{1}}+\beta_{2}(t) \mathbf{e}_{\mathbf{2}}+\beta_{3}(t) \mathbf{e}_{\mathbf{3}}\right) \\
& =\left(\beta_{2}(t) \alpha_{3}(t)-\beta_{3}(t) \alpha_{2}(t)\right) \mathbf{e}_{\mathbf{1}}+\cdots
\end{aligned}
\end{aligned}
$$

So, if $\mathbf{v}(t)$ and $\mathbf{w}(t)$ are smooth,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Brief revision of cross products:
$\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}, \quad \mathbf{e}_{2} \times \mathbf{e}_{1}=-\mathbf{e}_{3}$
$\mathbf{e}_{2} \times \mathbf{e}_{3}=\mathbf{e}_{1}, \quad \mathbf{e}_{2} \times \mathbf{e}_{3}=-\mathbf{e}_{1}$
$\mathbf{e}_{3} \times \mathbf{e}_{1}=\mathbf{e}_{2}, \quad \mathbf{e}_{1} \times \mathbf{e}_{3}=-\mathbf{e}_{2}$

$$
\begin{aligned}
& \mathbf{v}(t)=\alpha_{1}(t) \mathbf{e}_{\mathbf{1}}+\alpha_{2}(t) \mathbf{e}_{2}+\alpha_{3}(t) \mathbf{e}_{\mathbf{3}} \\
& \mathbf{w}(t)=\beta_{1}(t) \mathbf{e}_{\mathbf{1}}+\beta_{2}(t) \mathbf{e}_{\mathbf{2}}+\beta_{3}(t) \mathbf{e}_{\mathbf{3}} \\
& \begin{aligned}
\mathbf{v}(t) \times \mathbf{w}(t) & =\left(\alpha_{1}(t) \mathbf{e}_{\mathbf{1}}+\alpha_{2}(t) \mathbf{e}_{\mathbf{2}}+\alpha_{3}(t) \mathbf{e}_{\mathbf{3}}\right) \times\left(\beta_{1}(t) \mathbf{e}_{\mathbf{1}}+\beta_{2}(t) \mathbf{e}_{\mathbf{2}}+\beta_{3}(t) \mathbf{e}_{\mathbf{3}}\right) \\
& =\left(\beta_{2}(t) \alpha_{3}(t)-\beta_{3}(t) \alpha_{2}(t)\right) \mathbf{e}_{\mathbf{1}}+\cdots
\end{aligned}
\end{aligned}
$$

So, if $\mathbf{v}(t)$ and $\mathbf{w}(t)$ are smooth, then $\mathbf{v}(t) \times \mathbf{w}(t)$ is smooth.

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t)$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t)$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each t

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t)$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t)$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$

$$
\dot{\mathbf{v}}(t)
$$

$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$

$$
\dot{\mathbf{v}}(t)=\dot{x}(t) \mathbf{T}(t)+
$$

$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$

$$
\dot{\mathbf{v}}(t)=\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t)
$$

$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+
\end{aligned}
$$

$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis
for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t)$,

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t)$, $\dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$

and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t)
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$

and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

$$
\dot{\mathbf{N}}(t) . \mathbf{T}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$

$$
\dot{\mathbf{N}}(t) . \mathbf{T}(t)+\mathbf{N}(t) . \dot{\mathbf{T}}(t)
$$

So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

$$
\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)=(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=? ?
\end{aligned}
$$

$$
\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+
\end{aligned}
$$

$$
\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{k(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+
\end{aligned}
$$

$$
\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{k(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)
\end{aligned}
$$

$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)
\end{aligned}
$$

$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t)
\end{aligned}
$$

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t), \text { (unit) vector perpendicular to } \mathbf{T}(t)
$$ and $\mathbf{N}(t)$.

$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) . \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) . \mathbf{B}(t)+\mathbf{N}(t) . \dot{\mathbf{B}}(t)$
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)
\end{aligned}
$$

$$
\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}
$$

$$
\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}
$$

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$
$\dot{\mathbf{B}}(t) . \mathbf{T}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$
$\dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\mathbf{B}(t) . \dot{\mathbf{T}}(t)$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)= \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0} \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0} \\
& \dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)=(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$
So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$,
and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$
$\dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$
$\dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)}_{0}=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions
$x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t)$
$y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t)$
$z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)$
What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?
$\dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=0 \mathbf{T}(t)+\cdots$
$\dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0}$
$\dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$
$\dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)}_{0}=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=0 \mathbf{T}(t)+\cdots+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0} \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0} \\
& \dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)}_{0}=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=0 \mathbf{T}(t)-\tau(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0} \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0} \\
& \dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)}_{0}=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+? ? \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=0 \mathbf{T}(t)-\tau(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0} \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)}_{-\tau(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0} \\
& \dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)}_{0}=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$
$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=0 \mathbf{T}(t)-\tau(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0} \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)}_{-\tau(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0} \\
& \dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)}_{0}=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}
\end{aligned}
$$

Space curves

Given $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ unit speed parametrization, $\kappa(t) \neq 0$
$\mathbf{T}(t):=\dot{\gamma}(t)$, (unit) vector in direction of velocity
$\mathbf{N}(t):=\frac{1}{\kappa(t)} \ddot{\gamma}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$

$$
\begin{aligned}
\dot{\mathbf{v}}(t) & =\dot{x}(t) \mathbf{T}(t)+x(t) \dot{\mathbf{T}}(t) \\
& +\dot{y}(t) \mathbf{N}(t)+y(t) \dot{\mathbf{N}}(t) \\
& +\dot{z}(t) \mathbf{B}(t)+z(t) \dot{\mathbf{B}}(t)
\end{aligned}
$$

$\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$, (unit) vector perpendicular to $\mathbf{T}(t)$ and $\mathbf{N}(t)$.
$\{\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t)\}$ form an orthonormal basis for each $t \in(\alpha, \beta)$.
So, any vector field,

$$
\mathbf{v}(t)=x(t) \mathbf{T}(t)+y(t) \mathbf{N}(t)+z(t) \mathbf{B}(t)
$$

for some (unique!) $x(t), y(t), z(t) \in \mathbb{R}$ So, $x:(\alpha, \beta) \rightarrow \mathbb{R}, y:(\alpha, \beta) \rightarrow \mathbb{R}$, and $z:(\alpha, \beta) \rightarrow \mathbb{R}$ are functions

$$
\begin{aligned}
& x(t)=\mathbf{v}(t) \cdot \mathbf{T}(t) \\
& y(t)=\mathbf{v}(t) \cdot \mathbf{N}(t) \\
& z(t)=\mathbf{v}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

What are $\dot{\mathbf{T}}(t), \dot{\mathbf{N}}(t)$, and $\dot{\mathbf{B}}(t)$ in terms of the basis?

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{T}}(t)}_{\kappa(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{T}(t))^{\prime}}_{0} \\
& \dot{\mathbf{N}}(t) \cdot \mathbf{B}(t)+\underbrace{\mathbf{N}(t) \cdot \dot{\mathbf{B}}(t)}_{-\tau(t)}=\underbrace{(\mathbf{N}(t) \cdot \mathbf{B}(t))^{\prime}}_{0} \\
& \dot{\mathbf{B}}(t) \cdot \mathbf{T}(t)+\underbrace{\mathbf{B}(t) \cdot \dot{\mathbf{T}}(t)}_{0}=\underbrace{(\mathbf{B}(t) \cdot \mathbf{B}(t))^{\prime}}_{0}
\end{aligned}
$$

Frenet-Serret equations

Frenet-Serret equations

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=0 \mathbf{T}(t)+\kappa(t) \mathbf{N}(t)+0 \mathbf{B}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+0 \mathbf{N}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=0 \mathbf{T}(t)-\tau(t) \mathbf{N}(t)+0 \mathbf{B}(t)
\end{aligned}
$$

Frenet-Serret equations

$\dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t)$
$\dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t)$
$\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$

Frenet-Serret equations

$$
\begin{aligned}
\dot{\mathbf{T}}(t) & =\kappa(t) \mathbf{N}(t) \\
\dot{\mathbf{N}}(t) & =-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
\dot{\mathbf{B}}(t) & =-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$

Frenet-Serret equations

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion

Frenet-Serret equations

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ

Frenet-Serret equations

Planes

$$
\begin{aligned}
\dot{\mathbf{T}}(t) & =\kappa(t) \mathbf{N}(t) \\
\dot{\mathbf{N}}(t) & =-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
\dot{\mathbf{B}}(t) & =-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

Frenet-Serret equations

$$
\begin{aligned}
\dot{\mathbf{T}}(t) & =\kappa(t) \mathbf{N}(t) \\
\dot{\mathbf{N}}(t) & =-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
\dot{\mathbf{B}}(t) & =-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

Planes

$$
\begin{aligned}
& P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\} \\
& P=\left\{\mathbf{v} \in \mathbb{R}^{3} \mid \mathbf{n . v}=0\right\}
\end{aligned}
$$

\square

Frenet-Serret equations

Planes

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is γ : called the torsion of γ at t.

Frenet-Serret equations

Planes

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is $\gamma:(\alpha, \beta)$

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\}
$$

$$
\begin{aligned}
& P=\left\{\mathbf{v}, y, \mathbb{R}^{3} \mid \mathbf{n} \cdot \mathbf{v}=0\right\} \\
& P=0
\end{aligned}
$$

Frenet-Serret equations

$$
\begin{aligned}
\dot{\mathbf{T}}(t) & =\kappa(t) \mathbf{N}(t) \\
\dot{\mathbf{N}}(t) & =-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
\dot{\mathbf{B}}(t) & =-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ called the torsion of γ at t.

Frenet-Serret equations

$$
\begin{aligned}
\dot{\mathbf{T}}(t) & =\kappa(t) \mathbf{N}(t) \\
\dot{\mathbf{N}}(t) & =-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
\dot{\mathbf{B}}(t) & =-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ parametrizes a curve called the torsion of γ at t.

Frenet-Serret equations

Planes

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ parametrizes a curve that lies on the

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\}
$$

$$
P=\left\{\mathbf{v} \in \mathbb{R}^{3} \mid \mathbf{n} \cdot \mathbf{v}=0\right\}
$$ called the torsion of γ at t.

plane, P,

Frenet-Serret equations

Planes

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ parametrizes a curve that lies on the called the torsion of γ at t.
$P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\}$
$P=\left\{\mathbf{v} \in \mathbb{R}^{3} \mid \mathbf{n} . \mathbf{v}=0\right\}$
plane, P, if and only if

$$
\text { n. }\left(\gamma(t)-\gamma\left(t_{0}\right)\right)=0
$$

Frenet-Serret equations

Planes

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\}
$$

$$
P=\left\{\mathbf{v} \in \mathbb{R}^{3} \mid \mathbf{n} \cdot \mathbf{v}=0\right\}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ parametrizes a curve that lies on the called the torsion of γ at t. plane, P, if and only if

$$
\mathbf{n} \cdot\left(\gamma(t)-\gamma\left(t_{0}\right)\right)=0
$$

for all t

Frenet-Serret equations

Planes

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
P=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0\right\}
$$

$$
P=\left\{\mathbf{v} \in \mathbb{R}^{3} \mid \mathbf{n} \cdot \mathbf{v}=0\right\}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{3}$ parametrizes a curve that lies on the called the torsion of γ at t. plane, P, if and only if

$$
\mathbf{n} \cdot\left(\gamma(t)-\gamma\left(t_{0}\right)\right)=0
$$

for all $t \in(\alpha, \beta)$.

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all t

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant,

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime}
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime}=\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\right.
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime}=\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right.
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

$$
\begin{aligned}
& \text { If } \tau(t)=0 \text { for all } t \in(\alpha, \beta), \\
& \text { then } \dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0 \\
& \text { So, } \mathbf{B}(t) \text { is constant, say, } \mathbf{B} \\
& \begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\right.
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right.
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

$$
\text { If } \tau(t)=0 \text { for all } t \in(\alpha, \beta) \text {, }
$$

$$
\text { then } \dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0
$$

So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t)
\end{aligned}
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$\left(\gamma\left(t_{0}\right)-\gamma(t)\right) . \mathbf{B}(t)$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is If the torsion is a constant 0 , the curve lies on a plane. called the torsion of γ at t.

Notation:

$$
\begin{aligned}
& \text { If } \tau(t)=0 \text { for all } t \in(\alpha, \beta), \\
& \text { then } \dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0 \\
& \text { So, } \mathbf{B}(t) \text { is constant, say, } \mathbf{B} \\
& \begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is If the torsion is a constant 0 , the curve lies on a plane. called the torsion of γ at t.

Notation:

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$, $\mathbf{T}(t)$:
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0},
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is If the torsion is a constant 0 , the curve lies on a plane. called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is If the torsion is a constant 0 , the curve lies on a plane. called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is If the torsion is a constant 0 , the curve lies on a plane. called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is If the torsion is a constant 0 , the curve lies on a plane. called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

Notation:

$\mathbf{T}(t)$: unit tangent vector at t $\mathbf{N}(t)$: unit normal vector at t $\mathbf{B}(t)$:

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

$$
\begin{aligned}
& \dot{\mathbf{T}}(t)=\kappa(t) \mathbf{N}(t) \\
& \dot{\mathbf{N}}(t)=-\kappa(t) \mathbf{T}(t)+\tau(t) \mathbf{B}(t) \\
& \dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)
\end{aligned}
$$

$$
\text { At } t=t_{0}
$$

$$
c=\left(\gamma\left(t_{0}\right)-\gamma\left(t_{0}\right)\right) \cdot B=0
$$

$$
\text { So, }\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot B=0
$$

Definition. $\tau(t)$, defined so that $\dot{\mathbf{B}}(t)=-\tau(t) \mathbf{N}(t)$ is If the torsion is a constant 0 , the curve lies on a plane. called the torsion of γ at t.

If $\tau(t)=0$ for all $t \in(\alpha, \beta)$,
then $\dot{\mathbf{B}}(t)=0 \mathbf{N}(t)=0$
So, $\mathbf{B}(t)$ is constant, say, \mathbf{B}

Notation:

$\mathbf{T}(t)$: unit tangent vector at t
$\mathbf{N}(t)$: unit normal vector at t
$\mathbf{B}(t)$: unit binormal vector at t

$$
\begin{aligned}
\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)\right)^{\prime} & =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)+\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \dot{\mathbf{B}}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-\tau(t)\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{N}(t)\right. \\
& =\left(\left(\gamma\left(t_{0}\right)-\gamma(t)\right)^{\prime} \cdot \mathbf{B}(t)-0\right. \\
& =-\mathbf{T}(t) \cdot \mathbf{B}(t) \\
& =0
\end{aligned}
$$

$$
\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}(t)=\left(\gamma\left(t_{0}\right)-\gamma(t)\right) \cdot \mathbf{B}=c
$$

