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Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1,
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore,
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)
Taking f (t) = s(t)
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)

Taking f (t) = s(t) and g(t) = s−1(t)

(s−1)′(s(t)) =
1

s′(t)
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)

Taking f (t) = s(t) and g(t) = s−1(t)

(s−1)′(s(t)) =
1

s′(t)
=

1

||γ′(t)||
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)

Taking f (t) = s(t) and g(t) = s−1(t)

(s−1)′(s(t)) =
1

s′(t)
=

1

||γ′(t)||

(s−1)′(t̃) =
1

s′(s−1(t̃))
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)

Taking f (t) = s(t) and g(t) = s−1(t)

(s−1)′(s(t)) =
1

s′(t)
=

1

||γ′(t)||

(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||
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Theorem (First Fundamental theorem of calculus).
f : [α, β]→ R continuous

F (t) :=

∫ t

t0

f (u)du

then, F ′(t) = f (t)

Corollary. γ : (α, β) → R2 is a smooth and regular
parametrization.
and s(t) its arc-length function beginning at t0 then,
s′(t) = ||γ̇(t)||

Proof.

s(t) :=

∫ t

t0

||γ̇(u)||du

by the First Fundamental Theorem of Calculus, s′(t) =
||γ̇(t)||

Corollary. The arc length function s(t) is smooth.

Proof. s′(t) = ||γ̇(t)|| which is itself smooth (Why? ex-
ercise!).

Observe,
If g(f (t)) = t, then
g′(f (t))f ′(t) = 1, therefore, if f ′(t) 6= 0 for any t,

g′(f (t)) =
1

f ′(t)

Taking f (t) = s(t) and g(t) = s−1(t)

(s−1)′(s(t)) =
1

s′(t)
=

1

||γ′(t)||

(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||
γ :
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||
γ : (α, β)→
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ :
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→

71



(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃)
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃)
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃)
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)||

80



(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ :
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ : (α, β)→
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ : (α, β)→ R2 a regular smooth parametrization

84



(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ : (α, β)→ R2 a regular smooth parametrization
s(t),
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ : (α, β)→ R2 a regular smooth parametrization
s(t), the arc-length from t0 to t
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ : (α, β)→ R2 a regular smooth parametrization
s(t), the arc-length from t0 to t (where t, t0 ∈ (α, β))

87



(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ : (α, β)→ R2 a regular smooth parametrization
s(t), the arc-length from t0 to t (where t, t0 ∈ (α, β))
γ̃(t) = γ(s−1(t)), then
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(s−1)′(t̃) =
1

s′(s−1(t̃))
=

1

||γ′(s−1(t̃))||

γ : (α, β)→ R2

γ̃ : (α̃, β̃)→ R2

γ̃(t̃) = γ(φ(t̃))
γ̃′(t̃) = γ′(φ(t̃))φ′(t̃)

If φ(t) = s−1(t),
γ̃′(t̃) = γ′(s−1(t̃))(s−1)′(t̃) = γ′(s−1(t̃)) 1

||γ′(s−1(t̃))||

||γ̃′(t̃)|| = ||γ′(s−1(t̃))|| 1
||γ′(s−1(t̃))|| = 1

Proved that,

Theorem.
γ : (α, β)→ R2 a regular smooth parametrization
s(t), the arc-length from t0 to t (where t, t0 ∈ (α, β))
γ̃(t) = γ(s−1(t)), then
γ̃ is a unit speed re-parametrization.
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