$\gamma:(\alpha,\beta)\to\mathbb{R}^2$

$$\begin{split} \gamma &: (\alpha, \beta) \to \mathbb{R}^2 \\ f(t) &= ||\dot{\gamma}(t)|| \end{split}$$

$$\begin{split} \gamma &: (\alpha, \beta) \to \mathbb{R}^2 \\ f(t) &= ||\dot{\gamma}(t)|| \\ f \end{split}$$

$$\begin{split} \gamma &: (\alpha, \beta) \to \mathbb{R}^2 \\ f(t) &= ||\dot{\gamma}(t)|| \\ f &: [\alpha, \beta] \end{split}$$

$$\begin{split} \gamma &: (\alpha, \beta) \to \mathbb{R}^2 \\ f(t) &= ||\dot{\gamma}(t)|| \\ f &: [\alpha, \beta] \to \mathbb{R} \end{split}$$

The arc-length,

The arc-length, s from t = a to t = b

```
The arc-length, s from t = a to t = b is approximated by,
```

```
\begin{split} \gamma &: (\alpha, \beta) \to \mathbb{R}^2 \\ f(t) &= ||\dot{\gamma}(t)|| \\ f &: [\alpha, \beta] \to \mathbb{R} \text{ continuous} \end{split}
```

The arc-length, s from t = a to t = b is approximated by, $f(t_1)(t_2 - t_1) +$

The arc-length, s from t = a to t = b is approximated by, $f(t_1)(t_2 - t_1) + f(t_2)(t_3 - t_2) +$

The arc-length, s from t = a to t = b is approximated by, $f(t_1)(t_2 - t_1) + f(t_2)(t_3 - t_2) + \dots$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \ldots + ||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots +$ $||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots +$ $||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + ||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

Better and better approximations "converge". Denoted,

 $||\dot{\gamma}(t)||$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + ||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

Better and better approximations "converge". Denoted,

 $||\dot{\gamma}(t)||\mathrm{d}t$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots +$ $||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

$$\int ||\dot{\gamma}(t)|| \mathrm{d}t$$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots +$ $||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

$$\int_{t=a} ||\dot{\gamma}(t)|| \mathrm{d}t$$

The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots +$ $||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

$$\begin{split} \gamma : (\alpha, \beta) \to \mathbb{R}^2 \\ f(t) &= ||\dot{\gamma}(t)|| \\ f : [\alpha, \beta] \to \mathbb{R} \text{ continuous} \\ \end{split}$$
The arc-length, s from t = a to t = b is approximated by, $||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \ldots + ||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$

Better and better approximations "converge". Denoted,

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

Arc length

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

Arc length

Definition.

ated $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular

The arc-length, s from t = a to t = b is approximated

by,

$$||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + ||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})$$

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

Arc length

Definition.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular (of course!)

The arc-length, s from t = a to t = b is approximated

by,

$$||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + ||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})$$

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

Arc length

Definition.

 $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

The arc-length, s from t = a to t = b is approximated by.

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

Arc length

Definition.

 $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 ,

The arc-length, s from t = a to t = b is approximated by,

$$\frac{||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + \frac{1}{a}}{||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})}$$

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

The arc-length, s from t = a to t = b is approximated by

$$||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + \\ ||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1})$$

Better and better approximations "converge". Denoted,

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

Arc length

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

The arc-length, s from t = a to t = b is approximated by,

Better and better approximations "converge". Denoted,

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

Arc length

Definition.

s(t)

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

The arc-length, s from t = a to t = b is approximated by,

$$\begin{aligned} ||\dot{\gamma}(t_1)||(t_2 - \underbrace{t_1}_{a}) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + \\ ||\dot{\gamma}(t_{n-1})||(\underbrace{t_n}_{a} - t_{n-1}) \end{aligned}$$

Arc length

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d} u$$

Better and better approximations "converge". Denoted,

 $\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$

The arc-length, s from t = a to t = b is approximated by,

$$\frac{||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + ||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})||(t_n - t_{n-1})||$$

Arc length

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

$$s(t):=\int_{t_0}^t ||\dot{\gamma}(u)||\mathrm{d} u$$

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

 $\int_{t=a}$

The arc-length, s from t = a to t = b is approximated by,

$$\frac{||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + ||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})||(t_n - t_{n-1})||$$

Arc length

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d} u$$

The arc-length, s from t = a to t = b is approximated by,

$$\frac{||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + u_n)}{||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})}$$

Arc length

Definition.

 $s_{\beta}(t)$

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d} u$$

$$\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$$

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

The arc-length, s from t = a to t = b is approximated by,

$$\frac{||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + u_n||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})||(t_n - t_{n-1})||$$

Arc length

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d} u$$

Better and better approximations "converge". Denoted, Exercise.

 $\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

$$s_{\beta}(t) := \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

The arc-length, s from t = a to t = b is approximated by,

$$\frac{||\dot{\gamma}(t_1)||(t_2 - t_1) + ||\dot{\gamma}(t_2)||(t_3 - t_2) + \dots + u_n)}{||\dot{\gamma}(t_{n-1})||(t_n - t_{n-1})}$$

Arc length

Definition.

 $\gamma:(\alpha,\beta)\to\mathbb{R}^2$ is a smooth and regular (of course!) parametrization.

Arc-length beginning at t_0 , denoted s(t),

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d} u$$

Better and better approximations "converge". Denoted, Exercise.

 $\int_{t=a}^{t=b} ||\dot{\gamma}(t)|| \mathrm{d}t$

$$s_{\alpha}(t) := \int_{t_{\alpha}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

$$s_{\beta}(t) := \int_{t_{\beta}}^{t} ||\dot{\gamma}(u)|| \mathrm{d}u$$

Prove that $s_{\beta}(t) - s_{\alpha}(t)$ is a constant.

Theorem (First Fundamental theorem of calculus).

f

Theorem (First Fundamental theorem of calculus). $f: [\alpha, \beta] \to \mathbb{R}$ continuous **Theorem** (First Fundamental theorem of calculus). $f: [\alpha, \beta] \to \mathbb{R}$ continuous

F(t)
$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then,

$$F(t) := \int_{t_0}^t f(u) \mathrm{d} u$$

then, F'(t) = f(t)

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma:(\alpha,\beta)\to\mathbb{R}^2$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d} u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then,

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

s(t)

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d} u$$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus,

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function s(t)

$$F(t):=\int_{t_0}^t f(u)\mathrm{d} u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof.

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth

$$F(t) := \int_{t_0}^t f(u) \mathrm{d} u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? \Box

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If g(f(t)) = t

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If g(f(t)) = t, then

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If g(f(t)) = t, then q'(f(t)) f'(t) = 1

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore,

parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, s'(t) = $||\dot{\gamma}(t)||$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, s'(t) = $||\dot{\gamma}(t)||$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If g(f(t)) = t, then g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

$$g'(f(t)) = \frac{1}{f'(t)}$$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If g(f(t)) = t, then g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any

Corollary. $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

$$g'(f(t)) = \frac{1}{f'(t)}$$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, $s'(t) = ||\dot{\gamma}(t)||$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{1}{f'(t)}$

parametrization. and s(t) its arc-length function beginning at t_0 then,

 $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, s'(t) = $\|\dot{\gamma}(t)\|$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{1}{f'(t)}$ Taking f(t) = s(t)

parametrization. and s(t) its arc-length function beginning at t_0 then,

 $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, s'(t) = $\|\dot{\gamma}(t)\|$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, s'(t) = $\|\dot{\gamma}(t)\|$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{\mathbf{1}}{f'(t)}$ Taking f(t) = s(t) and $q(t) = s^{-1}(t)$ $(s^{-1})'(s(t)) = \frac{1}{s'(t)}$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

 $s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$

by the First Fundamental Theorem of Calculus, s'(t) = $\|\dot{\gamma}(t)\|$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{1}{f'(t)}$ Taking f(t) = s(t) and $q(t) = s^{-1}(t)$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{||\gamma'(t)||}$$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, s'(t) = $||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{1}{f'(t)}$

Taking
$$f(t) = s(t)$$
 and $g(t) = s^{-1}(t)$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{||\gamma'(t)||}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))}$$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, s'(t) = $||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{1}{f'(t)}$

Taking
$$f(t) = s(t)$$
 and $g(t) = s^{-1}(t)$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{||\gamma'(t)||}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$F(t) := \int_{t_0}^t f(u) \mathrm{d}u$$

then, F'(t) = f(t)

parametrization.

and s(t) its arc-length function beginning at t_0 then, $s'(t) = ||\dot{\gamma}(t)||$

Proof.

$$s(t) := \int_{t_0}^t ||\dot{\gamma}(u)|| \mathrm{d}u$$

by the First Fundamental Theorem of Calculus, s'(t) = $||\dot{\gamma}(t)||$

Corollary. The arc length function s(t) is smooth.

Proof. $s'(t) = ||\dot{\gamma}(t)||$ which is itself smooth (Why? exercise!).

Observe, If q(f(t)) = t, then **Corollary.** $\gamma : (\alpha, \beta) \to \mathbb{R}^2$ is a smooth and regular g'(f(t))f'(t) = 1, therefore, if $f'(t) \neq 0$ for any t, $g'(f(t)) = \frac{1}{f'(t)}$

Taking
$$f(t) = s(t)$$
 and $g(t) = s^{-1}(t)$

$$(s^{-1})'(s(t)) = \frac{1}{s'(t)} = \frac{1}{||\gamma'(t)||}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

 γ :

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

 $\gamma:(\alpha,\beta)\to$

$$\begin{split} (s^{-1})'(\tilde{t}) &= \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}\\ \gamma: (\alpha, \beta) \to \mathbb{R}^2 \end{split}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

 $\begin{array}{c} \gamma: (\overline{\alpha, \beta}) \to \mathbb{R}^2 \\ \tilde{\gamma}: \end{array}$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

 $\begin{array}{l} \gamma:(\alpha,\beta)\to\mathbb{R}^2\\ \tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to\end{array}$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$\begin{split} &\gamma:(\alpha,\beta)\to \mathbb{R}^2\\ &\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to \mathbb{R}^2 \end{split}$$
$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$\begin{split} &\gamma:(\alpha,\beta)\to\mathbb{R}^2\\ &\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to\mathbb{R}^2\\ &\tilde{\gamma}(\tilde{t}) \end{split}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$\begin{split} &\gamma:(\alpha,\beta)\to\mathbb{R}^2\\ &\tilde{\gamma}:(\tilde{\alpha},\tilde{\beta})\to\mathbb{R}^2\\ &\tilde{\gamma}(\tilde{t})=\gamma(\phi(\tilde{t})) \end{split}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

If $\phi(t) = s^{-1}(t)$,

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$\begin{split} & \text{If } \phi(t) = s^{-1}(t), \\ & \tilde{\gamma}'(\tilde{t}) \end{split}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$\begin{split} & \text{If } \phi(t) = s^{-1}(t), \\ & \tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t})) \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} \end{split}$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$||\tilde{\gamma}'(\tilde{t})||$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))|| \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))||\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))||\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

If $\phi(t) = s^{-1}(t)$, $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))||\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

If $\phi(t) = s^{-1}(t)$, $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))|| \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$
$$\gamma : (\alpha, \beta) \to \mathbb{R}^2$$
$$\tilde{\gamma} : (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$$
$$\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$$
$$\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$$

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))|| \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

[]]Theorem.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular smooth parametrization s(t), the arc-length from t_0 to t

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))|}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))||\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

Theorem.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular smooth parametrization s(t), the arc-length from t_0 to t (where $t, t_0 \in (\alpha, \beta)$)

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$
$$\gamma : (\alpha, \beta) \to \mathbb{R}^2$$
$$\tilde{\gamma} : (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$$
$$\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$$
$$\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$$

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))|| \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

$^{-1}$ Theorem.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular smooth parametrization s(t), the arc-length from t_0 to t (where $t, t_0 \in (\alpha, \beta)$) $\tilde{\gamma}(t) = \gamma(s^{-1}(t))$, then

$$(s^{-1})'(\tilde{t}) = \frac{1}{s'(s^{-1}(\tilde{t}))} = \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||}$$

$$\gamma : (\alpha, \beta) \to \mathbb{R}^2$$

$$\tilde{\gamma} : (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2$$

$$\tilde{\gamma}(\tilde{t}) = \gamma(\phi(\tilde{t}))$$

$$\tilde{\gamma}'(\tilde{t}) = \gamma'(\phi(\tilde{t}))\phi'(\tilde{t})$$

If
$$\phi(t) = s^{-1}(t)$$
,
 $\tilde{\gamma}'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))(s^{-1})'(\tilde{t}) = \gamma'(s^{-1}(\tilde{t}))\frac{1}{||\gamma'(s^{-1}(\tilde{t}))|}$

$$||\tilde{\gamma}'(\tilde{t})|| = ||\gamma'(s^{-1}(\tilde{t}))|| \frac{1}{||\gamma'(s^{-1}(\tilde{t}))||} = 1$$

Theorem.

 $\gamma: (\alpha, \beta) \to \mathbb{R}^2$ a regular smooth parametrization s(t), the arc-length from t_0 to t (where $t, t_0 \in (\alpha, \beta)$) $\tilde{\gamma}(t) = \gamma(s^{-1}(t))$, then $\tilde{\gamma}$ is a unit encoder commentation

 $\tilde{\gamma}$ is a unit speed re-parametrization.