Definition. A "parametrized plane curve"

Definition. A "parametrized plane curve" is a function,

 γ

Definition. A "parametrized plane curve" is a function, $\gamma : (\alpha, \beta)$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve:

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image γ

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2\}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), \}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$

 γ

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$
$$\gamma : (-\infty, \infty)$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4})$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{(x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$

$$\gamma$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty)$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

2.
$$P := \{ (x, y) \in \mathbb{R}^2 \mid y^2 = x \}$$

$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t^2, t)$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t^2, t) \in P$$

Explicitly, $\gamma(t) = (f_1(t), f_2(t))$, for planes

Set of points on the curve: Image $\gamma = \{(x, y) \in \mathbb{R}^2 \mid (x, y) = \gamma(t), t \in \mathbb{R}\}$

1.
$$L := \{ (x, y) \in \mathbb{R}^2 \mid 4y = 7x + 3 \}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t, \frac{7t+3}{4}) \in L$$

2.
$$P := \{(x, y) \in \mathbb{R}^2 \mid y^2 = x\}$$
$$\gamma : (-\infty, \infty) \to \mathbb{R}^2$$
$$\gamma(t) = (t^2, t) \in P$$

Parametrizing a circle

 $\gamma:(0,\pi/18)\to\mathbb{R}^2$

 $\gamma : (0, \pi/18) \to \mathbb{R}^2$ $\gamma(t) := (2\cos(t), 2\sin(t))$

 $\gamma : (0, 2\pi/18) \to \mathbb{R}^2$ $\gamma(t) := (2\cos(t), 2\sin(t))$

 $\begin{aligned} \gamma &: (0, 3\pi/18) \to \mathbb{R}^2 \\ \gamma(t) &:= (2\cos(t), 2\sin(t)) \end{aligned}$

 $\begin{aligned} \gamma &: (0, 6\pi/18) \to \mathbb{R}^2 \\ \gamma(t) &:= (2\cos(t), 2\sin(t)) \end{aligned}$

 $\begin{aligned} \gamma &: (0, 12\pi/18) \to \mathbb{R}^2 \\ \gamma(t) &:= (2\cos(t), 2\sin(t)) \end{aligned}$

 $\begin{aligned} \gamma &: (0, 18\pi/18) \to \mathbb{R}^2 \\ \gamma(t) &:= (2\cos(t), 2\sin(t)) \end{aligned}$

 $\gamma : (0, 24\pi/18) \to \mathbb{R}^2$ $\gamma(t) := (2\cos(t), 2\sin(t))$

Parametrizing a circle

 $\gamma : (0, 27\pi/18) \to \mathbb{R}^2$ $\gamma(t) := (2\cos(t), 2\sin(t))$

 $\begin{aligned} \gamma &: (0, 27\pi/18) \to \mathbb{R}^2 \\ \gamma(t) &:= (2\cos(t), 2\sin(t)) \end{aligned}$

 $\gamma:(-5,-4)\to\mathbb{R}^2$

$$\begin{split} \gamma &: (-5, -4) \to \mathbb{R}^2 \\ \gamma(t) &:= (t, t) \end{split}$$

 $\begin{array}{l} \gamma:(-5,-3)\to \mathbb{R}^2\\ \gamma(t):=(t,t) \end{array}$

$$\begin{split} \gamma &: (-5,-2) \to \mathbb{R}^2 \\ \gamma(t) &:= (t,t) \end{split}$$

$$\begin{array}{l} \gamma:(-5,-1)\to \mathbb{R}^2\\ \gamma(t):=(t,t) \end{array}$$

 $\begin{array}{l} \gamma:(-5,0)\to \mathbb{R}^2\\ \gamma(t):=(t,t) \end{array}$

 $\begin{array}{l} \gamma:(-5,1)\to \mathbb{R}^2\\ \gamma(t):=(t,t) \end{array}$

 $\begin{array}{l} \gamma:(-5,3)\to \mathbb{R}^2\\ \gamma(t):=(t,t) \end{array}$

 $\begin{array}{l} \gamma:(-5,4)\to \mathbb{R}^2\\ \gamma(t):=(t,t) \end{array}$

 $\begin{array}{l} \gamma:(-5,5)\to \mathbb{R}^2\\ \gamma(t):=(t,t) \end{array}$

Example. $f : \mathbb{R} \to \mathbb{R}$

 $f(x) = \{$

$$f(x) = \begin{cases} x^2 & x < 5 \end{cases}$$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5 \end{cases}$$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

f(5) = 0

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

f(5) = 0 $\lim_{x \to 5^{-}} f(x)$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x)$$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^2 & x > 5 \end{cases}$$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

 $\lim_{x \to 5^-} f(x) = 5^2$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$ Can say, $\lim_{x \to 5} f(x) = 5^{2}$

Example.
$$f(x) = x^2$$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example.
$$f(x) = x^2$$

 $\lim_{x \to 5} f(x) = 5^2$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example.
$$f(x) = x^2$$

 $\lim_{x \to 5} f(x) = 5^2 = f(5)$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example.
$$f(x) = x^2$$

$$\lim_{x \to 5} f(x) = 5^2 = f(5)$$
 f is "continous".

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$ Can say, $\lim_{x \to 5} f(x) = 5^{2}$ Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$ Can say, $\lim_{x \to 5} f(x) = 5^{2}$ Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists,
Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$ Can say, $\lim_{x \to 5} f(x) = 5^{2}$ Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable"

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

$$\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$$

Can say,
$$\lim_{x \to 5} f(x) = 5^{2}$$

Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f at x,

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$ Can say, $\lim_{x \to 5} f(x) = 5^{2}$ Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f at x, denoted f'(x) or $\frac{df}{dx}$.

Example. $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x^2 & x < 5\\ 0 & x = 5\\ x^3 & x > 5 \end{cases}$$

$$f(5) = 0$$
$$\lim_{x \to 5^{-}} f(x) = 5^{2}$$
$$\lim_{x \to 5^{+}} f(x) = 5^{3}$$

Example.

$$f(x) = \begin{cases} x^2 & x \neq 5\\ 0 & x = 5 \end{cases}$$

 $\lim_{x \to 5^{-}} f(x) = 5^{2} = \lim_{x \to 5^{+}} f(x)$ Can say, $\lim_{x \to 5} f(x) = 5^{2}$ Example. $f(x) = x^2$ $\lim_{x \to 5} f(x) = 5^2 = f(5)$ f is "continous".

Definition (Continuous function). $f : \mathbb{R} \to \mathbb{R}$ is continuous if $\lim_{x \to a} f(x) = f(a)$

Definition (Derivative). If $f : \mathbb{R} \to \mathbb{R}$ is such that

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists, then f is "differentiable" and the limit is the derivative of f at x, denoted f'(x) or $\frac{df}{dx}$.