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lim
h→0

f (x + h)− f (x)

h

exists, then f is “differentiable” and the limit is the
derivative
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Quick review: Derivative

Example. f : R→ R

f (x) =


x2 x < 5

0 x = 5

x3 x > 5

f (5) = 0
lim
x→5−

f (x) = 52

lim
x→5+

f (x) = 53

Example.

f (x) =

{
x2 x 6= 5

0 x = 5

lim
x→5−

f (x) = 52 = lim
x→5+

f (x)

Can say, lim
x→5

f (x) = 52

Example. f (x) = x2

lim
x→5

f (x) = 52 = f (5)

f is “continous”.

Definition (Continuous function). f : R → R is con-
tinuous if lim

x→a
f (x) = f (a)

Definition (Derivative). If f : R→ R is such that

lim
h→0

f (x + h)− f (x)

h

exists, then f is “differentiable” and the limit is the
derivative of f
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Quick review: Derivative

Example. f : R→ R

f (x) =


x2 x < 5

0 x = 5

x3 x > 5

f (5) = 0
lim
x→5−

f (x) = 52

lim
x→5+

f (x) = 53

Example.

f (x) =

{
x2 x 6= 5

0 x = 5

lim
x→5−

f (x) = 52 = lim
x→5+

f (x)

Can say, lim
x→5

f (x) = 52

Example. f (x) = x2

lim
x→5

f (x) = 52 = f (5)

f is “continous”.

Definition (Continuous function). f : R → R is con-
tinuous if lim

x→a
f (x) = f (a)

Definition (Derivative). If f : R→ R is such that

lim
h→0

f (x + h)− f (x)

h

exists, then f is “differentiable” and the limit is the
derivative of f at x,
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Quick review: Derivative

Example. f : R→ R

f (x) =


x2 x < 5

0 x = 5

x3 x > 5

f (5) = 0
lim
x→5−

f (x) = 52

lim
x→5+

f (x) = 53

Example.

f (x) =

{
x2 x 6= 5

0 x = 5

lim
x→5−

f (x) = 52 = lim
x→5+

f (x)

Can say, lim
x→5

f (x) = 52

Example. f (x) = x2

lim
x→5

f (x) = 52 = f (5)

f is “continous”.

Definition (Continuous function). f : R → R is con-
tinuous if lim

x→a
f (x) = f (a)

Definition (Derivative). If f : R→ R is such that

lim
h→0

f (x + h)− f (x)

h

exists, then f is “differentiable” and the limit is the
derivative of f at x, denoted f ′(x) or df

dx.
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Quick review: Derivative

Example. f : R→ R

f (x) =


x2 x < 5

0 x = 5

x3 x > 5

f (5) = 0
lim
x→5−

f (x) = 52

lim
x→5+

f (x) = 53

Example.

f (x) =

{
x2 x 6= 5

0 x = 5

lim
x→5−

f (x) = 52 = lim
x→5+

f (x)

Can say, lim
x→5

f (x) = 52

Example. f (x) = x2

lim
x→5

f (x) = 52 = f (5)

f is “continous”.

Definition (Continuous function). f : R → R is con-
tinuous if lim

x→a
f (x) = f (a)

Definition (Derivative). If f : R→ R is such that

f ′(x) := lim
h→0

f (x + h)− f (x)

h

exists, then f is “differentiable” and the limit is the
derivative of f at x, denoted f ′(x) or df

dx.
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