Definition. A "parametrized plane curve"

Definition. A "parametrized plane curve" is a function,

 γ
Definition. A "parametrized plane curve" is a function,

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.
Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image γ

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve: Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2}\right\}$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t),\right\}$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\begin{aligned}
& \text { 1. } L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma
\end{aligned}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
L & :=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty)
\end{aligned}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right)
\end{aligned}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

2. $P:=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x\right\}$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

2. $P:=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x\right\}$
γ

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

$$
\text { 2. } P:=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x\right\}
$$

$$
\gamma:(-\infty, \infty)
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
P & :=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2}
\end{aligned}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& P:=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t^{2}, t\right)
\end{aligned}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& P:=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t^{2}, t\right) \in P
\end{aligned}
$$

Definition. A "parametrized plane curve" is a function,

 $\gamma:(\alpha, \beta) \rightarrow \mathbb{R}^{2}$.Explicitly,
$\gamma(t)=\left(f_{1}(t), f_{2}(t)\right)$, for planes

Set of points on the curve:
Image $\gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid(x, y)=\gamma(t), t \in \mathbb{R}\right\}$

Examples.

$$
\text { 1. } \begin{aligned}
& L:=\left\{(x, y) \in \mathbb{R}^{2} \mid 4 y=7 x+3\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t, \frac{7 t+3}{4}\right) \in L
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
& P:=\left\{(x, y) \in \mathbb{R}^{2} \mid y^{2}=x\right\} \\
& \gamma:(-\infty, \infty) \rightarrow \mathbb{R}^{2} \\
& \gamma(t)=\left(t^{2}, t\right) \in P
\end{aligned}
$$

Parametrizing a circle

Parametrizing a circle

Parametrizing a circle

Parametrizing a circle

Parametrizing a circle

$$
\gamma:(0, \pi / 18) \rightarrow \mathbb{R}^{2}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0, \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,2 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,3 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,6 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,9 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,12 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,18 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,24 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a circle

$$
\begin{aligned}
& \gamma:(0,27 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(0,27 \pi / 18) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(2 \cos (t), 2 \sin (t))
\end{aligned}
$$

Parametrizing a line

$$
\gamma:(-5,-4) \rightarrow \mathbb{R}^{2}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,-4) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,-3) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,-2) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,-1) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,0) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,1) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,2) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,3) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,4) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Parametrizing a line

$$
\begin{aligned}
& \gamma:(-5,5) \rightarrow \mathbb{R}^{2} \\
& \gamma(t):=(t, t)
\end{aligned}
$$

Quick review: Derivative

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=\{
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5\end{cases}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5\end{cases}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
f(5)=0
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
f(5)=0
$$

$$
\lim _{x \rightarrow 5^{-}} f(x)
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
f(5)=0
$$

$$
\lim _{x \rightarrow 5^{-}} f(x)=5^{2}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
f(5)=0
$$

$$
\lim _{x \rightarrow 5^{-}} f(x)=5^{2}
$$

$$
\lim _{x \rightarrow 5^{+}}^{x \rightarrow 0} f(x)
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{2} & x>5\end{cases}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
f(5)=0
$$

$$
\lim _{x \rightarrow 5^{-}} f(x)=5^{2}
$$

$$
\lim _{x \rightarrow 5^{+}}^{x \rightarrow 0} f(x)=5^{3}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\lim _{x \rightarrow 5^{-}} f(x)=5^{2}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x) \\
& \text { Can say, } \lim _{x \rightarrow 5} f(x)=5^{2}
\end{aligned}
$$

Quick review: Derivative

Example. $f(x)=x^{2}$
Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x) \\
& \text { Can say, } \lim _{x \rightarrow 5} f(x)=5^{2}
\end{aligned}
$$

Quick review: Derivative

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}$
Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x) \\
& \text { Can say, } \lim _{x \rightarrow 5} f(x)=5^{2}
\end{aligned}
$$

Quick review: Derivative

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\text { Can say, } \lim _{x \rightarrow 5} f(x)=5^{2}
$$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x) \\
& \text { Can say, } \lim _{x \rightarrow 5} f(x)=5^{2}
\end{aligned}
$$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow+^{+}} f(x) \\
& \text { Can say, } \lim _{x \rightarrow 5} f(x)=5^{2}
\end{aligned}
$$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$$
\begin{aligned}
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow+^{+}} f(x) \\
& \text { Can say, } \lim _{x \rightarrow 5} f(x)=5^{2}
\end{aligned}
$$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$
Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists,

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)$
Can say, $\lim _{x \rightarrow 5} f(x)=5^{2}$

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)$
Can say, $\lim _{x \rightarrow 5} f(x)=5^{2}$

$$
5
$$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists, then f is "differentiable"
20.

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)$
Can say, $\lim _{x \rightarrow 5} f(x)=5^{2}$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists, then f is "differentiable" and the limit is the derivative

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5)^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)$
Can say, $\lim _{x \rightarrow 5} f(x)=5^{2}$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists, then f is "differentiable" and the limit is the derivative of f

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)$
Can say, $\lim _{x \rightarrow 5} f(x)=5^{2}$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists, then f is "differentiable" and the limit is the derivative of f at x,

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)$
Can say, $\lim _{x \rightarrow 5} f(x)=5^{2}$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists, then f is "differentiable" and the limit is the derivative of f at x, denoted $f^{\prime}(x)$ or $\frac{d f}{d x}$.

Quick review: Derivative

Example. $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}x^{2} & x<5 \\ 0 & x=5 \\ x^{3} & x>5\end{cases}
$$

$$
\begin{aligned}
& f(5)=0 \\
& \lim _{x \rightarrow 5^{-}} f(x)=5^{2} \\
& \lim _{x \rightarrow 5^{+}} f(x)=5^{3}
\end{aligned}
$$

Example.

$$
f(x)= \begin{cases}x^{2} & x \neq 5 \\ 0 & x=5\end{cases}
$$

$\lim _{x \rightarrow 5^{-}} f(x)=5^{2}=\lim _{x \rightarrow 5^{+}} f(x)$
Can say, $\lim _{x \rightarrow 5} f(x)=5^{2}$

Example. $f(x)=x^{2}$
$\lim _{x \rightarrow 5} f(x)=5^{2}=f(5)$
f is "continous".
Definition (Continuous function). $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous if $\lim _{x \rightarrow a} f(x)=f(a)$

Definition (Derivative). If $f: \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
f^{\prime}(x):=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists, then f is "differentiable" and the limit is the derivative of f at x, denoted $f^{\prime}(x)$ or $\frac{d f}{d x}$.

